
boofuzz Documentation
Release 0.4.2

Joshua Pereyda

Oct 06, 2023

USER GUIDE

1 Why? 3

2 Features 5

3 Installation 7
3.1 Installing boofuzz . 7
3.2 Quickstart . 9
3.3 Contributing . 11

4 Public Protocol Libraries 15
4.1 Session . 15
4.2 Target . 21
4.3 Connections . 24
4.4 Monitors . 34
4.5 Logging . 39
4.6 Protocol Definition . 52
4.7 Static Protocol Definition . 66
4.8 Other Modules . 74
4.9 Changelog . 80

5 Contributions 95

6 Community 97

7 Indices and tables 99

Python Module Index 101

Index 103

i

ii

boofuzz Documentation, Release 0.4.2

Boofuzz is a fork of and the successor to the venerable Sulley fuzzing framework. Besides numerous bug fixes, boofuzz
aims for extensibility. The goal: fuzz everything.

USER GUIDE 1

https://github.com/jtpereyda/boofuzz/actions?query=workflow%3ATest+branch%3Amaster
https://boofuzz.readthedocs.io/
https://pypi.org/project/boofuzz/
https://gitter.im/jtpereyda/boofuzz
https://github.com/OpenRCE/sulley

boofuzz Documentation, Release 0.4.2

2 USER GUIDE

CHAPTER

ONE

WHY?

Sulley has been the preeminent open source fuzzer for some time, but has fallen out of maintenance.

3

boofuzz Documentation, Release 0.4.2

4 Chapter 1. Why?

CHAPTER

TWO

FEATURES

Like Sulley, boofuzz incorporates all the critical elements of a fuzzer:

• Easy and quick data generation.

• Instrumentation – AKA failure detection.

• Target reset after failure.

• Recording of test data.

Unlike Sulley, boofuzz also features:

• Much easier install experience!

• Support for arbitrary communications mediums.

• Built-in support for serial fuzzing, ethernet- and IP-layer, UDP broadcast.

• Better recording of test data – consistent, thorough, clear.

• Test result CSV export.

• Extensible instrumentation/failure detection.

• Far fewer bugs.

Sulley is affectionately named after the giant teal and purple creature from Monsters Inc. due to his fuzziness. Boofuzz
is likewise named after the only creature known to have scared Sulley himself: Boo!

5

boofuzz Documentation, Release 0.4.2

Fig. 1: Boo from Monsters Inc

6 Chapter 2. Features

CHAPTER

THREE

INSTALLATION

pip install boofuzz

Boofuzz installs as a Python library used to build fuzzer scripts. See Installing boofuzz for advanced and detailed
instructions.

3.1 Installing boofuzz

3.1.1 Prerequisites

Boofuzz requires Python 3.8. Recommended installation requires pip. As a base requirement, the following packages
are needed:

Ubuntu/Debian
sudo apt-get install python3-pip python3-venv build-essential

OpenSuse
sudo zypper install python3-devel gcc

CentOS
sudo yum install python3-devel gcc

3.1.2 Install

It is strongly recommended to set up boofuzz in a virtual environment (venv). First, create a directory that will hold
our boofuzz install:

$ mkdir boofuzz && cd boofuzz
$ python3 -m venv env

This creates a new virtual environment env in the current folder. Note that the Python version in a virtual environment
is fixed and chosen at its creation. Unlike global installs, within a virtual environment python is aliased to the Python
version of the virtual environment.

Next, activate the virtual environment:

$ source env/bin/activate

Or, if you are on Windows:

7

https://docs.python.org/3/tutorial/venv.html

boofuzz Documentation, Release 0.4.2

> env\Scripts\activate.bat

Ensure you have the latest version of both pip and setuptools:

(env) $ pip install -U pip setuptools

Finally, install boofuzz:

(env) $ pip install boofuzz

To run and test your fuzzing scripts, make sure to always activate the virtual environment beforehand.

3.1.3 From Source

1. Like above, it is recommended to set up a virtual environment. Depending on your concrete setup, this is largely
equivalent to the steps outlined above. Make sure to upgrade setuptools and pip or poetry.

2. Download the source code. You can either grab a zip from https://github.com/jtpereyda/boofuzz or directly clone
it with git:

$ git clone https://github.com/jtpereyda/boofuzz.git

Install with Poetry

Poetry will automatically create a virtual environment for you and install the required dependencies. The installation
will be editable by default, meaning that changes to the source code will be seen directly without reinstalling.

Simply execute the following command inside the boofuzz source dir:

$ poetry install

To install with extra dependencies like dev or docs, specify them in one of the following ways:

$ poetry install --extras "dev"
$ poetry install -E docs
$ poetry install --all-extras

Install with Pip

Run pip from within the boofuzz directory after activating the virtual environment:

$ pip install .

Tips:

• Use the -e option for developer mode, which allows changes to be seen automatically without reinstalling:

$ pip install -e .

• To install developer tools (unit test dependencies, test runners, etc.) as well:

$ pip install -e .[dev]

8 Chapter 3. Installation

https://github.com/jtpereyda/boofuzz

boofuzz Documentation, Release 0.4.2

• If you’re behind a proxy:

$ set HTTPS_PROXY=http://your.proxy.com:port

• If you’re planning on developing boofuzz itself, you can save a directory and create your virtual environment
after you’ve cloned the source code (so env/ is within the main boofuzz directory).

3.1.4 Extras

process_monitor.py

The process monitor is a tool for detecting crashes and restarting an application on Windows or Linux. While boofuzz
typically runs on a different machine than the target, the process monitor must run on the target machine itself.

network_monitor.py

The network monitor was Sulley’s primary tool for recording test data, and has been replaced with boofuzz’s logging
mechanisms. However, some people still prefer the PCAP approach.

Note: The network monitor requires Pcapy and Impacket, which will not be automatically installed with boofuzz. You
can manually install them with pip install pcapy impacket.

If you run into errors, check out the Pcapy requirements on the project page.

3.2 Quickstart

The Session object is the center of your fuzz. . . session. When you create it, you’ll pass it a Target object, which
will itself receive a Connection object. For example:

session = Session(
target=Target(

connection=TCPSocketConnection("127.0.0.1", 8021)))

Connection objects implement ITargetConnection. Available options include TCPSocketConnection and its sister
classes for UDP, SSL and raw sockets, and SerialConnection.

With a Session object ready, you next need to define the messages in your protocol. Once you’ve read the requisite
RFC, tutorial, etc., you should be confident enough in the format to define your protocol using the various block and
primitive types.

Each message is a Request object, whose children define the structure for that message.

Here are several message definitions from the FTP protocol:

user = Request("user", children=(
String("key", "USER"),
Delim("space", " "),
String("val", "anonymous"),
Static("end", "\r\n"),

))

(continues on next page)

3.2. Quickstart 9

https://github.com/helpsystems/pcapy

boofuzz Documentation, Release 0.4.2

(continued from previous page)

passw = Request("pass", children=(
String("key", "PASS"),
Delim("space", " "),
String("val", "james"),
Static("end", "\r\n"),

))

stor = Request("stor", children=(
String("key", "STOR"),
Delim("space", " "),
String("val", "AAAA"),
Static("end", "\r\n"),

))

retr = Request("retr", children=(
String("key", "RETR"),
Delim("space", " "),
String("val", "AAAA"),
Static("end", "\r\n"),

))

Once you’ve defined your message(s), you will connect them into a graph using the Session object you just created:

session.connect(user)
session.connect(user, passw)
session.connect(passw, stor)
session.connect(passw, retr)

When fuzzing, boofuzz will send user before fuzzing passw, and user and passw before fuzzing stor or retr.

Now you are ready to fuzz:

session.fuzz()

Note that at this point you have only a very basic fuzzer. Making it kick butt is up to you. There are some examples
and request_definitions in the repository that might help you get started.

The log data of each run will be saved to a SQLite database located in the boofuzz-results directory in your current
working directory. You can reopen the web interface on any of those databases at any time with

$ boo open <run-*.db>

To do cool stuff like checking responses, you’ll want to use post_test_case_callbacks in Session. To use data
from a response in a subsequent request, see ProtocolSessionReference.

You may also be interested in Making Your Own Block/Primitive.

Remember boofuzz is all Python, and advanced use cases often require customization. If you are doing crazy cool stuff,
check out the community info and consider contributing back!

Happy fuzzing, and Godspeed!

10 Chapter 3. Installation

https://github.com/jtpereyda/boofuzz/tree/master/examples
https://github.com/jtpereyda/boofuzz/tree/master/request_definitions

boofuzz Documentation, Release 0.4.2

3.2.1 More examples

Simple FTP

Check out the ftp_simple.py example. To run it, you will need an FTP server.

Once you have compiled the FTP server, just run it with ./ftp. The server runs on port 8021 by default. Make sure
to run the ftp_simple.py script against the port that the server is listening on.

Simple HTTP and HTTP with body

Good examples on how to get started with HTTP fuzzing can be found in http_simple.py and http_with_body.py. Here
is an example of how to execute theses scripts.

You will need an HTTP server, you can use Python or any other webserver like Apache or NGINX for that.

$ python3 -m http.server

Then run http_simple.py or http_with_body.py against the IP and port that your server uses.

3.3 Contributing

3.3.1 Issues and Bugs

If you have a bug report or idea for improvement, please create an issue on GitHub, or a pull request with the fix.

3.3.2 Code Reviews

All pull requests are subject to professional code review. If you do not want your code reviewed, do not submit it.

3.3.3 Contributors

See installation instructions for details on installing boofuzz from source with developer options.

Pull Request Checklist

1. Install python version 3.8+

2. Verify tests pass:

tox

Note: (Re-)creating a tox environment on Linux requires root rights because some of your unit tests
work with raw sockets. tox will check if cap_net_admin and cap_net_raw+eip are set on the tox
environment python interpreter and if not, will do so.

Once the capabilities have been set, running tox won’t need extended permissions.

3.3. Contributing 11

https://github.com/jtpereyda/boofuzz/blob/master/examples/ftp_simple.py
https://github.com/Siim/ftp
https://github.com/jtpereyda/boofuzz/blob/master/examples/http_simple.py
https://github.com/jtpereyda/boofuzz/blob/master/examples/http_with_body.py

boofuzz Documentation, Release 0.4.2

Attention: If the tests pass, check the output for new flake8 warnings that indicate PEP8 viola-
tions.

3. Format the code to meet our code style requirements:

black .

Use # fmt: off and # fmt: on around a block to disable formatting locally.

4. If you have PyCharm, use it to see if your changes introduce any new static analysis warnings.

5. Modify CHANGELOG.rst to say what you changed.

6. If adding a new module, consider adding it to the Sphinx docs (see docs folder).

3.3.4 Maintainers

Review Checklist

On every pull request:

1. Verify changes are sensible and in line with project goals.

2. Verify tests pass (continuous integration is OK for this).

3. Use PyCharm to check static analysis if changes are significant or non-trivial.

4. Verify CHANGELOG.rst is updated.

5. Merge in.

Release Checklist

Releases are deployed from GitHub Actions when a new release is created on GitHub.

Prep

1. Create release branch.

2. Increment version number from last release according to PEP 0440 and roughly according to the Semantic Ver-
sioning guidelines.

1. In pyproject.toml.

2. In docs/conf.py.

3. Add new version to .github/ISSUE_TEMPLATE/2_bug_report.yml.

3. Modify CHANGELOG file for publication if needed.

4. Merge release branch.

12 Chapter 3. Installation

boofuzz Documentation, Release 0.4.2

Release

1. Create release on Github.

2. Verify GitHub Actions deployment succeeds.

3.3. Contributing 13

boofuzz Documentation, Release 0.4.2

14 Chapter 3. Installation

CHAPTER

FOUR

PUBLIC PROTOCOL LIBRARIES

The following protocol libraries are free and open source, but the implementations are not at all close to full protocol
coverage:

• boofuzz-ftp

• boofuzz-http

If you have an open source boofuzz protocol suite to share, please let us know!

4.1 Session

class boofuzz.Session(session_filename=None, index_start=1, index_end=None, sleep_time=0.0,
restart_interval=0, web_port=26000, keep_web_open=True, console_gui=False,
crash_threshold_request=12, crash_threshold_element=3, restart_sleep_time=5,
restart_callbacks=None, restart_threshold=None, restart_timeout=None,
pre_send_callbacks=None, post_test_case_callbacks=None,
post_start_target_callbacks=None, fuzz_loggers=None,
fuzz_db_keep_only_n_pass_cases=0, receive_data_after_each_request=True,
check_data_received_each_request=False, receive_data_after_fuzz=False,
ignore_connection_reset=False, ignore_connection_aborted=False,
ignore_connection_issues_when_sending_fuzz_data=True,
ignore_connection_ssl_errors=False, reuse_target_connection=False, target=None,
web_address='localhost', db_filename=None)

Bases: Graph

Extends pgraph.graph and provides a container for architecting protocol dialogs.

Parameters

• session_filename (str) – Filename to serialize persistent data to. Default None.

• index_start (int) –

• index_end (int) –

• sleep_time (float) – Time in seconds to sleep in between tests. Default 0.

• restart_interval (int) – Restart the target after n test cases, disable by setting to 0
(default).

• console_gui (bool) – Use curses to generate a static console screen similar to the webin-
terface. Has not been tested under Windows. Default False.

• crash_threshold_request (int) – Maximum number of crashes allowed before a request
is exhausted. Default 12.

15

https://github.com/jtpereyda/boofuzz-ftp
https://github.com/jtpereyda/boofuzz-http

boofuzz Documentation, Release 0.4.2

• crash_threshold_element (int) – Maximum number of crashes allowed before an ele-
ment is exhausted. Default 3.

• restart_sleep_time (int) – Time in seconds to sleep when target can’t be restarted.
Default 5.

• restart_callbacks (list of method) – The registered method will be called after a
failed post_test_case_callback Default None.

• restart_threshold (int) – Maximum number of retries on lost target connection. De-
fault None (indefinitely).

• restart_timeout (float) – Time in seconds for that a connection attempt should be re-
tried. Default None (indefinitely).

• pre_send_callbacks (list of method) – The registered method will be called prior to
each fuzz request. Default None.

• post_test_case_callbacks (list of method) – The registered method will be called
after each fuzz test case. Default None.

• post_start_target_callbacks (list of method) – Method(s) will be called after the
target is started or restarted, say, by a process monitor.

• web_port (int or None) – Port for monitoring fuzzing campaign via a web browser. Set
to None to disable the web app. Default 26000.

• keep_web_open (bool) – Keep the webinterface open after session completion. Default
True.

• fuzz_loggers (list of ifuzz_logger.IFuzzLogger) – For saving test data and re-
sults.. Default Log to STDOUT.

• fuzz_db_keep_only_n_pass_cases (int) – Minimize disk usage by only saving passing
test cases if they are in the n test cases preceding a failure or error. Set to 0 to save after every
test case (high disk I/O!). Default 0.

• receive_data_after_each_request (bool) – If True, Session will attempt to receive a
reply after transmitting each non-fuzzed node. Default True.

• check_data_received_each_request (bool) – If True, Session will verify that some
data has been received after transmitting each non-fuzzed node, and if not, register a failure.
If False, this check will not be performed. Default False. A receive attempt is still made
unless receive_data_after_each_request is False.

• receive_data_after_fuzz (bool) – If True, Session will attempt to receive a reply after
transmitting a fuzzed message. Default False.

• ignore_connection_reset (bool) – Log ECONNRESET errors (“Target connection re-
set”) as “info” instead of failures.

• ignore_connection_aborted (bool) – Log ECONNABORTED errors as “info” instead
of failures.

• ignore_connection_issues_when_sending_fuzz_data (bool) – Ignore fuzz data
transmission failures. Default True. This is usually a helpful setting to enable, as targets
may drop connections once a message is clearly invalid.

• ignore_connection_ssl_errors (bool) – Log SSL related errors as “info” instead of
failures. Default False.

• reuse_target_connection (bool) – If True, only use one target connection instead of
reconnecting each test case. Default False.

16 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

• target (Target) – Target for fuzz session. Target must be fully initialized. Default None.

• db_filename (str) – Filename to store sqlite db for test results and case information. De-
faults to ./boofuzz-results/{uniq_timestamp}.db

• web_address – Address where’s Boofuzz logger exposed. Default ‘localhost’

Changed in version 0.4.2: This class has been moved into the sessions subpackage. The full path is now boo-
fuzz.sessions.session.Session.

add_node(node)
Add a pgraph node to the graph. We overload this routine to automatically generate and assign an ID
whenever a node is added.

Parameters
node (pgraph.Node) – Node to add to session graph

add_target(target)
Add a target to the session. Multiple targets can be added for parallel fuzzing.

Parameters
target (Target) – Target to add to session

build_webapp_thread(port=26000, address='localhost')

connect(src, dst=None, callback=None)
Create a connection between the two requests (nodes) and register an optional callback to process in between
transmissions of the source and destination request. The session class maintains a top level node that all
initial requests must be connected to. Example:

sess = sessions.session()
sess.connect(sess.root, s_get("HTTP"))

If given only a single parameter, sess.connect() will default to attaching the supplied node to the root node.
This is a convenient alias. The following line is identical to the second line from the above example:

sess.connect(s_get("HTTP"))

Leverage callback methods to handle situations such as challenge response systems. A callback method
must follow the message signature of Session.example_test_case_callback(). Remember to in-
clude **kwargs for forward-compatibility.

Parameters

• src (str or Request (pgrah.Node)) – Source request name or request node

• dst (str or Request (pgrah.Node), optional) – Destination request name or re-
quest node

• callback (def, optional) – Callback function to pass received data to between node
xmits. Default None.

Returns
The edge between the src and dst.

Return type
pgraph.Edge

example_test_case_callback(target, fuzz_data_logger, session, test_case_context, *args, **kwargs)
Example call signature for methods given to connect() or register_post_test_case_callback()

Parameters

4.1. Session 17

boofuzz Documentation, Release 0.4.2

• target (Target) – Target with sock-like interface.

• fuzz_data_logger (ifuzz_logger.IFuzzLogger) – Allows logging of test checks and
passes/failures. Provided with a test case and test step already opened.

• session (Session) – Session object calling post_send. Useful properties include
last_send and last_recv.

• test_case_context (ProtocolSession) – Context for test case-scoped data.
ProtocolSession session_variables values are generally set within a callback and
referenced in elements via default values of type ProtocolSessionReference.

• args – Implementations should include *args and **kwargs for forward-compatibility.

• kwargs – Implementations should include *args and **kwargs for forward-compatibility.

property exec_speed

export_file()

Dump various object values to disk.

See
import_file()

feature_check()

Check all messages/features.

Returns
None

fuzz(name=None, max_depth=None)
Fuzz the entire protocol tree.

Iterates through and fuzzes all fuzz cases, skipping according to self.skip and restarting based on
self.restart_interval.

If you want the web server to be available, your program must persist after calling this method.
helpers.pause_for_signal() is available to this end.

Parameters

• name (str) – Pass in a Request name to fuzz only a single request message. Pass in a test
case name to fuzz only a single test case.

• max_depth (int) – Maximum combinatorial depth; set to 1 for “simple” fuzzing.

Returns
None

fuzz_by_name(name)
Fuzz a particular test case or node by name.

Parameters
name (str) – Name of node.

Deprecated since version 0.4.0: Use Session.fuzz() instead.

fuzz_single_case(mutant_index)
Deprecated: Fuzz a test case by mutant_index.

Deprecation note: The new approach is to set Session’s start and end indices to the same value.

Parameters
mutant_index (int) – Positive non-zero integer.

18 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Returns
None

Raises
sex.SulleyRuntimeError – If any error is encountered while executing the test case.

import_file()

Load various object values from disk.

See
export_file()

property netmon_results

num_mutations(max_depth=None)
Number of total mutations in the graph. The logic of this routine is identical to that of fuzz(). See fuzz() for
inline comments. The member variable self.total_num_mutations is updated appropriately by this routine.

Parameters

• max_depth (int) – Maximum combinatorial depth used for fuzzing. num_mutations re-
turns None if this value is

• 1 (None or greater than) –

• fuzzing. (as the number of mutations is typically very large when
using combinatorial) –

Returns
Total number of mutations in this session.

Return type
int

register_post_test_case_callback(method)
Register a post- test case method.

The registered method will be called after each fuzz test case.

Potential uses:

• Closing down a connection.

• Checking for expected responses.

The order of callback events is as follows:

pre_send() - req - callback ... req - callback - post-test-case-callback

Parameters
method (function) – A method with the same parameters as post_send()

property runtime

server_init()

Called by fuzz() to initialize variables, web interface, etc.

test_case_data(index)
Return test case data object (for use by web server)

Parameters
index (int) – Test case index

4.1. Session 19

boofuzz Documentation, Release 0.4.2

Returns
Test case data object

Return type
DataTestCase

transmit_fuzz(sock, node, edge, callback_data, mutation_context)
Render and transmit a fuzzed node, process callbacks accordingly.

Parameters

• sock (Target, optional) – Socket-like object on which to transmit node

• node (pgraph.node.node (Node), optional) – Request/Node to transmit

• edge (pgraph.edge.edge (pgraph.edge), optional) – Edge along the current fuzz
path from “node” to next node.

• callback_data (bytes) – Data from previous callback.

• mutation_context (MutationContext) – Current mutation context.

transmit_normal(sock, node, edge, callback_data, mutation_context)
Render and transmit a non-fuzzed node, process callbacks accordingly.

Parameters

• sock (Target, optional) – Socket-like object on which to transmit node

• node (pgraph.node.node (Node), optional) – Request/Node to transmit

• edge (pgraph.edge.edge (pgraph.edge), optional) – Edge along the current fuzz
path from “node” to next node.

• callback_data (bytes) – Data from previous callback.

• mutation_context (MutationContext) – active mutation context

4.1.1 Request-Graph visualisation options

The following methods are available to render data, which can then be used to visualise the request structure.

Session.render_graph_gml()

Render the GML graph description.

Returns
GML graph description.

Return type
str

Session.render_graph_graphviz()

Render the graphviz graph structure.

Example to create a png:

with open('somefile.png', 'wb') as file:
file.write(session.render_graph_graphviz().create_png())

Returns
Pydot object representing entire graph

20 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Return type
pydot.Dot

Session.render_graph_udraw()

Render the uDraw graph description.

Returns
uDraw graph description.

Return type
str

Session.render_graph_udraw_update()

Render the uDraw graph update description.

Returns
uDraw graph description.

Return type
str

4.2 Target

class boofuzz.Target(connection, monitors=None, monitor_alive=None, max_recv_bytes=10000,
repeater=None, procmon=None, procmon_options=None, **kwargs)

Bases: object

Target descriptor container.

Takes an ITargetConnection and wraps send/recv with appropriate FuzzDataLogger calls.

Encapsulates pedrpc connection logic.

Contains a logger which is configured by Session.add_target().

Example

tcp_target = Target(SocketConnection(host=’127.0.0.1’, port=17971))

Parameters

• connection (itarget_connection.ITargetConnection) – Connection to system un-
der test.

• monitors (List[Union[IMonitor, pedrpc.Client]]) – List of Monitors for this Tar-
get.

• monitor_alive – List of Functions that are called when a Monitor is alive. It is passed the
monitor instance that became alive. Use it to e.g. set options on restart.

• repeater (repeater.Repeater) – Repeater to use for sending. Default None.

• procmon – Deprecated interface for adding a process monitor.

• procmon_options – Deprecated interface for adding a process monitor.

Changed in version 0.4.2: This class has been moved into the sessions subpackage. The full path is now boo-
fuzz.sessions.target.Target.

4.2. Target 21

boofuzz Documentation, Release 0.4.2

close()

Close connection to the target.

Returns
None

monitors_alive()

Wait for the monitors to become alive / establish connection to the RPC server. This method is called on
every restart of the target and when it’s added to a session. After successful probing, a callback is called,
passing the monitor.

Returns
None

property netmon_options

open()

Opens connection to the target. Make sure to call close!

Returns
None

pedrpc_connect()

property procmon_options

recv(max_bytes=None)
Receive up to max_bytes data from the target.

Parameters
max_bytes (int) – Maximum number of bytes to receive.

Returns
Received data.

send(data)
Send data to the target. Only valid after calling open!

Parameters
data – Data to send.

Returns
None

set_fuzz_data_logger(fuzz_data_logger)
Set this object’s fuzz data logger – for sent and received fuzz data.

Parameters
fuzz_data_logger (ifuzz_logger.IFuzzLogger) – New logger.

Returns
None

22 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

4.2.1 Repeater

class boofuzz.repeater.Repeater(sleep_time)
Bases: object

Base Repeater class.

Parameters
sleep_time (float) – Time to sleep between repetitions.

abstract log_message()

Formats a message to output in a log file. It should contain info about your repetition.

abstract repeat()

Decides whether the operation should repeat.

Returns
True if the operation should repeat, False otherwise.

Return type
Bool

abstract reset()

Resets the internal state of the repeater.

abstract start()

Starts the repeater.

The following concrete implementations of this interface are available:

4.2.2 TimeRepeater

class boofuzz.repeater.TimeRepeater(duration, sleep_time=0)
Bases: Repeater

Time-based repeater class. Starts a timer, and repeats until duration seconds have passed.

Raises
ValueError – Raised if a time <= 0 is specified.

Parameters

• duration (float) – The duration of the repitition.

• sleep_time (float) – Time to sleep between repetitions.

log_message()

Formats a message to output in a log file. It should contain info about your repetition.

repeat()

Decides whether the operation should repeat.

Returns
True if the operation should repeat, False otherwise.

Return type
Bool

reset()

Resets the timer.

4.2. Target 23

boofuzz Documentation, Release 0.4.2

start()

Starts the timer.

4.2.3 CountRepeater

class boofuzz.repeater.CountRepeater(count, sleep_time=0)
Bases: Repeater

Count-Based repeater class. Repeats a fixed number of times.

Raises
ValueError – Raised if a count < 1 is specified.

Parameters

• count (int) – Total amount of packets to be sent. Important: Do not confuse this parameter
with the amount of repetitions. Specifying 1 would send exactly one packet.

• sleep_time (float) – Time to sleep between repetitions.

log_message()

Formats a message to output in a log file. It should contain info about your repetition.

repeat()

Decides whether the operation should repeat.

Returns
True if the operation should repeat, False otherwise.

Return type
Bool

reset()

Resets the internal state of the repeater.

start()

Starts the repeater.

4.3 Connections

Connection objects implement ITargetConnection. Available options include:

• TCPSocketConnection

• UDPSocketConnection

• SSLSocketConnection

• RawL2SocketConnection

• RawL3SocketConnection

• SocketConnection (depreciated)

• SerialConnection

24 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

4.3.1 ITargetConnection

class boofuzz.connections.ITargetConnection

Bases: object

Interface for connections to fuzzing targets. Target connections may be opened and closed multiple times. You
must open before using send/recv and close afterwards.

Changed in version 0.2.0: ITargetConnection has been moved into the connections subpackage. The full path is
now boofuzz.connections.itarget_connection.ITargetConnection

abstract close()

Close connection.

Returns
None

abstract property info

Return description of connection info.

E.g., “127.0.0.1:2121”

Returns
Connection info descrption

Return type
str

abstract open()

Opens connection to the target. Make sure to call close!

Returns
None

abstract recv(max_bytes)
Receive up to max_bytes data.

Parameters
max_bytes (int) – Maximum number of bytes to receive.

Returns
Received data. bytes(‘’) if no data is received.

Return type
bytes

abstract send(data)
Send data to the target.

Parameters
data – Data to send.

Returns
Number of bytes actually sent.

Return type
int

4.3. Connections 25

boofuzz Documentation, Release 0.4.2

4.3.2 BaseSocketConnection

class boofuzz.connections.BaseSocketConnection(send_timeout, recv_timeout)
Bases: ITargetConnection

This class serves as a base for a number of Connections over sockets.

New in version 0.2.0.

Parameters

• send_timeout (float) – Seconds to wait for send before timing out. Default 5.0.

• recv_timeout (float) – Seconds to wait for recv before timing out. Default 5.0.

close()

Close connection to the target.

Returns
None

abstract open()

Opens connection to the target. Make sure to call close!

Returns
None

4.3.3 TCPSocketConnection

class boofuzz.connections.TCPSocketConnection(host, port, send_timeout=5.0, recv_timeout=5.0,
server=False)

Bases: BaseSocketConnection

BaseSocketConnection implementation for use with TCP Sockets.

New in version 0.2.0.

Parameters

• host (str) – Hostname or IP adress of target system.

• port (int) – Port of target service.

• send_timeout (float) – Seconds to wait for send before timing out. Default 5.0.

• recv_timeout (float) – Seconds to wait for recv before timing out. Default 5.0.

• server (bool) – Set to True to enable server side fuzzing.

close()

Close connection to the target.

Returns
None

property info

Return description of connection info.

E.g., “127.0.0.1:2121”

Returns
Connection info descrption

26 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Return type
str

open()

Opens connection to the target. Make sure to call close!

Returns
None

recv(max_bytes)
Receive up to max_bytes data from the target.

Parameters
max_bytes (int) – Maximum number of bytes to receive.

Returns
Received data.

send(data)
Send data to the target. Only valid after calling open!

Parameters
data – Data to send.

Returns
Number of bytes actually sent.

Return type
int

4.3.4 UDPSocketConnection

class boofuzz.connections.UDPSocketConnection(host, port, send_timeout=5.0, recv_timeout=5.0,
server=False, bind=None, broadcast=False)

Bases: BaseSocketConnection

BaseSocketConnection implementation for use with UDP Sockets.

New in version 0.2.0.

Parameters

• host (str) – Hostname or IP adress of target system.

• port (int) – Port of target service.

• send_timeout (float) – Seconds to wait for send before timing out. Default 5.0.

• recv_timeout (float) – Seconds to wait for recv before timing out. Default 5.0.

• server (bool) – Set to True to enable server side fuzzing.

• bind (tuple (host, port)) – Socket bind address and port. Required if using recv().

• broadcast (bool) – Set to True to enable UDP broadcast. Must supply appropriate broad-
cast address for send() to work, and ‘’ for bind host for recv() to work.

property info

Return description of connection info.

E.g., “127.0.0.1:2121”

4.3. Connections 27

boofuzz Documentation, Release 0.4.2

Returns
Connection info descrption

Return type
str

classmethod max_payload()

Returns the maximum payload this connection can send at once.

This performs some crazy CTypes magic to do a getsockopt() which determines the max UDP payload size
in a platform-agnostic way.

Returns
The maximum length of a UDP packet the current platform supports

Return type
int

open()

Opens connection to the target. Make sure to call close!

Returns
None

recv(max_bytes)
Receive up to max_bytes data from the target.

Parameters
max_bytes (int) – Maximum number of bytes to receive.

Returns
Received data.

send(data)
Send data to the target. Only valid after calling open! Some protocols will truncate; see
self.MAX_PAYLOADS.

Parameters
data – Data to send.

Returns
Number of bytes actually sent.

Return type
int

4.3.5 SSLSocketConnection

class boofuzz.connections.SSLSocketConnection(host, port, send_timeout=5.0, recv_timeout=5.0,
server=False, sslcontext=None,
server_hostname=None)

Bases: TCPSocketConnection

BaseSocketConnection implementation for use with SSL Sockets.

New in version 0.2.0.

Parameters

• host (str) – Hostname or IP adress of target system.

28 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

• port (int) – Port of target service.

• send_timeout (float) – Seconds to wait for send before timing out. Default 5.0.

• recv_timeout (float) – Seconds to wait for recv before timing out. Default 5.0.

• server (bool) – Set to True to enable server side fuzzing.

• sslcontext (ssl.SSLContext) – Python SSL context to be used. Required if server=True
or server_hostname=None.

• server_hostname (string) – server_hostname, required for verifying identity of remote
SSL/TLS server

open()

Opens connection to the target. Make sure to call close!

Returns
None

recv(max_bytes)
Receive up to max_bytes data from the target.

Parameters
max_bytes (int) – Maximum number of bytes to receive.

Returns
Received data.

send(data)
Send data to the target. Only valid after calling open!

Parameters
data – Data to send.

Returns
Number of bytes actually sent.

Return type
int

4.3.6 RawL2SocketConnection

class boofuzz.connections.RawL2SocketConnection(interface, send_timeout=5.0, recv_timeout=5.0,
ethernet_proto=0, mtu=1518, has_framecheck=True)

Bases: BaseSocketConnection

BaseSocketConnection implementation for use with Raw Layer 2 Sockets.

New in version 0.2.0.

Parameters

• interface (str) – Hostname or IP adress of target system.

• send_timeout (float) – Seconds to wait for send before timing out. Default 5.0.

• recv_timeout (float) – Seconds to wait for recv before timing out. Default 5.0.

• ethernet_proto (int) – Ethernet protocol to bind to. If supplied, the opened socket gets
bound to this protocol, otherwise the python default of 0 is used. Must be supplied if this
socket should be used for receiving. For valid options, see <net/if_ether.h> in the Linux
Kernel documentation. Usually, ETH_P_ALL (0x0003) is not a good idea.

4.3. Connections 29

boofuzz Documentation, Release 0.4.2

• mtu (int) – sets the maximum transmission unit size for this connection. Defaults to 1518
for standard Ethernet.

• has_framecheck (bool) – Indicates if the target ethernet protocol needs 4 bytes for a
framecheck. Default True (for standard Ethernet).

property info

Return description of connection info.

E.g., “127.0.0.1:2121”

Returns
Connection info descrption

Return type
str

open()

Opens connection to the target. Make sure to call close!

Returns
None

recv(max_bytes)
Receives a packet from the raw socket. If max_bytes < mtu, only the first max_bytes are returned and the
rest of the packet is discarded. Otherwise, return the whole packet.

Parameters
max_bytes (int) – Maximum number of bytes to return. 0 to return the whole packet.

Returns
Received data

send(data)
Send data to the target. Only valid after calling open! Data will be trunctated to self.max_send_size (De-
fault: 1514 bytes).

Parameters
data – Data to send.

Returns
Number of bytes actually sent.

Return type
int

4.3.7 RawL3SocketConnection

class boofuzz.connections.RawL3SocketConnection(interface, send_timeout=5.0, recv_timeout=5.0,
ethernet_proto=2048, l2_dst=b'\xff\xff\xff\xff\xff\xff',
packet_size=1500)

Bases: BaseSocketConnection

BaseSocketConnection implementation for use with Raw Layer 2 Sockets.

New in version 0.2.0.

Parameters

• interface (str) – Interface to send and receive on.

30 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

• send_timeout (float) – Seconds to wait for send before timing out. Default 5.0.

• recv_timeout (float) – Seconds to wait for recv before timing out. Default 5.0.

• ethernet_proto (int) – Ethernet protocol to bind to. Defaults to ETH_P_IP (0x0800).

• l2_dst (bytes) – Layer2 destination address (e.g. MAC address). Default b’ÿÿÿÿÿÿ’
(broadcast)

• packet_size (int) – Maximum packet size (in bytes). Default 1500 if the underlying
interface uses standard ethernet for layer 2. Otherwise, a different packet size may apply
(e.g. Jumboframes, 802.5 Token Ring, 802.11 wifi, . . .) that must be specified.

property info

Return description of connection info.

E.g., “127.0.0.1:2121”

Returns
Connection info descrption

Return type
str

open()

Opens connection to the target. Make sure to call close!

Returns
None

recv(max_bytes)
Receives a packet from the raw socket. If max_bytes < packet_size, only the first max_bytes are returned
and the rest of the packet is discarded. Otherwise, return the whole packet.

Parameters
max_bytes (int) – Maximum number of bytes to return. 0 to return the whole packet.

Returns
Received data

send(data)
Send data to the target. Only valid after calling open! Data will be trunctated to self.packet_size (Default:
1500 bytes).

Parameters
data – Data to send.

Returns
Number of bytes actually sent.

Return type
int

4.3. Connections 31

boofuzz Documentation, Release 0.4.2

4.3.8 SocketConnection

boofuzz.connections.SocketConnection(host, port=None, proto='tcp', bind=None, send_timeout=5.0,
recv_timeout=5.0, ethernet_proto=None,
l2_dst=b'\xff\xff\xff\xff\xff\xff', udp_broadcast=False, server=False,
sslcontext=None, server_hostname=None)

ITargetConnection implementation using sockets.

Supports UDP, TCP, SSL, raw layer 2 and raw layer 3 packets.

Note: SocketConnection is deprecated and will be removed in a future version of Boofuzz. Use the classes
derived from BaseSocketConnection instead.

Changed in version 0.2.0: SocketConnection has been moved into the connections subpackage. The full path is
now boofuzz.connections.socket_connection.SocketConnection

Deprecated since version 0.2.0: Use the classes derived from BaseSocketConnection instead.

Examples:

tcp_connection = SocketConnection(host='127.0.0.1', port=17971)
udp_connection = SocketConnection(host='127.0.0.1', port=17971, proto='udp')
udp_connection_2_way = SocketConnection(host='127.0.0.1', port=17971, proto='udp',␣
→˓bind=('127.0.0.1', 17972)
udp_broadcast = SocketConnection(host='127.0.0.1', port=17971, proto='udp', bind=(
→˓'127.0.0.1', 17972),

udp_broadcast=True)
raw_layer_2 = (host='lo', proto='raw-l2')
raw_layer_2 = (host='lo', proto='raw-l2',

l2_dst='\xFF\xFF\xFF\xFF\xFF\xFF', ethernet_proto=socket_connection.
→˓ETH_P_IP)
raw_layer_3 = (host='lo', proto='raw-l3')

Parameters

• host (str) – Hostname or IP address of target system, or network interface string if using
raw-l2 or raw-l3.

• port (int) – Port of target service. Required for proto values ‘tcp’, ‘udp’, ‘ssl’.

• proto (str) – Communication protocol (“tcp”, “udp”, “ssl”, “raw-l2”, “raw-l3”). Default
“tcp”. raw-l2: Send packets at layer 2. Must include link layer header (e.g. Ethernet frame).
raw-l3: Send packets at layer 3. Must include network protocol header (e.g. IPv4).

• bind (tuple (host, port)) – Socket bind address and port. Required if using recv()
with ‘udp’ protocol.

• send_timeout (float) – Seconds to wait for send before timing out. Default 5.0.

• recv_timeout (float) – Seconds to wait for recv before timing out. Default 5.0.

• ethernet_proto (int) – Ethernet protocol when using ‘raw-l3’. 16 bit integer. Default
ETH_P_IP (0x0800) when using ‘raw-l3’. See “if_ether.h” in Linux documentation for more
options.

• l2_dst (str) – Layer 2 destination address (e.g. MAC address). Used only by ‘raw-l3’.
Default ‘ÿÿÿÿÿÿ’ (broadcast).

32 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

• udp_broadcast (bool) – Set to True to enable UDP broadcast. Must supply appropriate
broadcast address for send() to work, and ‘’ for bind host for recv() to work.

• server (bool) – Set to True to enable server side fuzzing.

• sslcontext (ssl.SSLContext) – Python SSL context to be used. Required if server=True
or server_hostname=None.

• server_hostname (string) – server_hostname, required for verifying identity of remote
SSL/TLS server.

4.3.9 SerialConnection

class boofuzz.connections.SerialConnection(port=0, baudrate=9600, timeout=5,
message_separator_time=0.3, content_checker=None)

Bases: ITargetConnection

ITargetConnection implementation for generic serial ports.

Since serial ports provide no default functionality for separating messages/packets, this class provides several
means:

• timeout: Return received bytes after timeout seconds.

• msg_separator_time: Return received bytes after the wire is silent for a given time. This is useful, e.g.,
for terminal protocols without a machine-readable delimiter. A response may take a long time to send its
information, and you know the message is done when data stops coming.

• content_check: A user-defined function takes the data received so far and checks for a packet. The function
should return 0 if the packet isn’t finished yet, or n if a valid message of n bytes has been received. Remaining
bytes are stored for next call to recv(). Example:

def content_check_newline(data):
if data.find('\n') >= 0:

return data.find('\n')
else:

return 0

If none of these methods are used, your connection may hang forever.

Changed in version 0.2.0: SerialConnection has been moved into the connections subpackage. The full path is
now boofuzz.connections.serial_connection.SerialConnection

Parameters

• port (Union[int, str]) – Serial port name or number.

• baudrate (int) – Baud rate for port.

• timeout (float) – For recv(). After timeout seconds from receive start, recv() will return
all received data, if any.

• message_separator_time (float) – After message_separator_time seconds without re-
ceiving any more data, recv() will return. Optional. Default None.

• content_checker (function(str) -> int) – User-defined function. recv() will pass
all bytes received so far to this method. If the method returns n > 0, recv() will return n
bytes. If it returns 0, recv() will keep on reading.

4.3. Connections 33

boofuzz Documentation, Release 0.4.2

close()

Close connection to the target.

Returns
None

property info

Return description of connection info.

E.g., “127.0.0.1:2121”

Returns
Connection info descrption

Return type
str

open()

Opens connection to the target. Make sure to call close!

Returns
None

recv(max_bytes)
Receive up to max_bytes data from the target.

Parameters
max_bytes (int) – Maximum number of bytes to receive.

Returns
Received data.

send(data)
Send data to the target. Only valid after calling open!

Parameters
data – Data to send.

Returns
Number of bytes actually sent.

Return type
int

4.4 Monitors

Monitors are components that monitor the target for specific behaviour. A monitor can be passive and just observe and
provide data or behave more actively, interacting directly with the target. Some monitors also have the capability to
start, stop and restart targets.

Detecting a crash or misbehaviour of your target can be a complex, non-straight forward process depending on the tools
you have available on your targets host; this holds true especially for embedded devices. Boofuzz provides three main
monitor implementations:

• ProcessMonitor, a Monitor that collects debug info from process on Windows and Unix. It also can restart the
target process and detect segfaults.

• NetworkMonitor, a Monitor that passively captures network traffic via PCAP and attaches it to the testcase log.

• CallbackMonitor, which is used to implement the callbacks that can be supplied to the Session class.

34 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

4.4.1 Monitor Interface (BaseMonitor)

class boofuzz.monitors.BaseMonitor

Bases: object

Interface for Target monitors. All Monitors must adhere to this specification.

New in version 0.2.0.

alive()

Called when a Target containing this Monitor is added to a session. Use this function to connect to e.g.
RPC hosts if your target lives on another machine.

You MUST return True if the monitor is alive. You MUST return False otherwise. If a Monitor is not alive,
this method will be called until it becomes alive or throws an exception. You SHOULD handle timeouts /
connection retry limits in the monitor implementation.

Defaults to return True.

Returns
Bool

get_crash_synopsis()

Called if any monitor indicates that the current testcase has failed, even if this monitor did not detect a
crash. You SHOULD return a human- readable representation of the crash synopsis (e.g. hexdump). You
MAY save the full crashdump somewhere.

Returns
str

post_send(target=None, fuzz_data_logger=None, session=None)
Called after the current fuzz node is transmitted. Use it to collect data about a target and decide whether it
crashed.

You MUST return True if the Target is still alive. You MUST return False if the Target crashed. If one
Monitor reports a crash, the whole testcase will be marked as crashing.

Defaults to return True.

Returns
Bool

post_start_target(target=None, fuzz_data_logger=None, session=None)
Called after a target is started or restarted.

pre_send(target=None, fuzz_data_logger=None, session=None)
Called before the current fuzz node is transmitted.

Defaults to no effect.

Returns
None

restart_target(target=None, fuzz_data_logger=None, session=None)
Restart a target. Must return True if restart was successful, False if it was unsuccessful or this monitor
cannot restart a Target, which causes the next monitor in the chain to try to restart.

The first successful monitor causes the restart chain to stop applying.

Defaults to call stop and start, return True if successful.

4.4. Monitors 35

boofuzz Documentation, Release 0.4.2

Returns
Bool

retrieve_data()

Called to retrieve data independent of whether the current fuzz node crashed the target or not. Called before
the fuzzer proceeds to a new testcase.

You SHOULD return any auxiliary data that should be recorded. The data MUST be serializable, e.g.
bytestring.

Defaults to return None.

set_options(*args, **kwargs)
Called to set options for your monitor (e.g. local crash dump storage). *args and **kwargs can be explicitly
specified by implementing classes, however you SHOULD ignore any kwargs you do not recognize.

Defaults to no effect.

Returns
None

start_target()

Starts a target. You MUST return True if the start was successful. You MUST return False if not. Monitors
will be tried to start the target in the order they were added to the Target; the first Monitor to succeed breaks
iterating.

Returns
Bool

stop_target()

Stops a target. You MUST return True if the stop was successful. You MUST return False if not. Monitors
will be tried to stop the target in the order they were added to the Target; the first Monitor to succeed breaks
iterating.

Returns
Bool

4.4.2 ProcessMonitor

The process monitor consists of two parts; the ProcessMonitor class that implements BaseMonitor and a second
module that is to be run on the host of your target.

class boofuzz.monitors.ProcessMonitor(host, port)
Proxy class for the process monitor interface.

In Versions < 0.2.0, boofuzz had network and process monitors that communicated over RPC. The RPC client
was directly passed to the session class, and resolved all method calls dynamically on the RPC partner.

Since 0.2.0, every monitor class must implement the abstract class BaseMonitor, which defines a common inter-
face among all Monitors. To aid future typehinting efforts and to disambiguate Network- and Process Monitors,
this explicit proxy class has been introduced that fast-forwards all calls to the RPC partner.

New in version 0.2.0.

alive()

This method is forwarded to the RPC daemon.

get_crash_synopsis()

This method is forwarded to the RPC daemon.

36 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

on_new_server(new_uuid)
Restores all set options to the RPC daemon if it has restarted since the last call.

post_send(target=None, fuzz_data_logger=None, session=None)
This method is forwarded to the RPC daemon.

pre_send(target=None, fuzz_data_logger=None, session=None)
This method is forwarded to the RPC daemon.

restart_target(target=None, fuzz_data_logger=None, session=None)
This method is forwarded to the RPC daemon.

set_crash_filename(new_crash_filename)
Deprecated since version 0.2.0.

This option should be set via set_options.

set_options(*args, **kwargs)
The old RPC interfaces specified set_foobar methods to set options. As these vary by RPC implementation,
this trampoline method translates arguments that have been passed as keyword arguments to set_foobar
calls.

If you call set_options(foobar="barbaz"), it will result in a call to set_foobar("barbaz") on the
RPC partner.

set_proc_name(new_proc_name)
Deprecated since version 0.2.0.

This option should be set via set_options.

set_start_commands(new_start_commands)
Deprecated since version 0.2.0.

This option should be set via set_options.

set_stop_commands(new_stop_commands)
Deprecated since version 0.2.0.

This option should be set via set_options.

start_target()

This method is forwarded to the RPC daemon.

stop_target()

This method is forwarded to the RPC daemon.

4.4.3 NetworkMonitor

The network monitor consists of two parts; the NetworkMonitor class that implements BaseMonitor and a second
module that is to be run on a host that can monitor the traffic.

class boofuzz.monitors.NetworkMonitor(host, port)
Proxy class for the network monitor interface.

In Versions < 0.2.0, boofuzz had network and process monitors that communicated over RPC. The RPC client
was directly passed to the session class, and resolved all method calls dynamically on the RPC partner.

Since 0.2.0, every monitor class must implement the abstract class BaseMonitor, which defines a common inter-
face among all Monitors. To aid future typehinting efforts and to disambiguate Network- and Process Monitors,
this explicit proxy class has been introduced that fast-forwards all calls to the RPC partner.

4.4. Monitors 37

boofuzz Documentation, Release 0.4.2

New in version 0.2.0.

alive()

This method is forwarded to the RPC daemon.

on_new_server(new_uuid)
Restores all set options to the RPC daemon if it has restarted since the last call.

post_send(target=None, fuzz_data_logger=None, session=None)
This method is forwarded to the RPC daemon.

pre_send(target=None, fuzz_data_logger=None, session=None)
This method is forwarded to the RPC daemon.

restart_target(target=None, fuzz_data_logger=None, session=None)
Always returns false as this monitor cannot restart a target.

retrieve_data()

This method is forwarded to the RPC daemon.

set_filter(new_filter)
Deprecated since version 0.2.0.

This option should be set via set_options.

set_log_path(new_log_path)
Deprecated since version 0.2.0.

This option should be set via set_options.

set_options(*args, **kwargs)
The old RPC interfaces specified set_foobar methods to set options. As these vary by RPC implementation,
this trampoline method translates arguments that have been passed as keyword arguments to set_foobar
calls.

If you call set_options(foobar="barbaz"), it will result in a call to set_foobar("barbaz") on the
RPC partner.

Additionally, any options set here are cached and re-applied to the RPC server should it restart for whatever
reason (e.g. the VM it’s running on was restarted).

4.4.4 CallbackMonitor

class boofuzz.monitors.CallbackMonitor(on_pre_send=None, on_post_send=None,
on_restart_target=None, on_post_start_target=None)

New-Style Callback monitor that is used in Session to provide callback-arrays. It’s purpose is to keep the *_call-
backs arguments in the session class while simplifying the implementation of session by forwarding these call-
backs to the monitor infrastructure.

The mapping of arguments to method implementations of this class is as follows:

• restart_callbacks –> target_restart

• pre_send_callbacks –> pre_send

• post_test_case_callbacks –> post_send

• post_start_target_callbacks –> post_start_target

38 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

All other implemented interface members are stubs only, as no corresponding arguments exist in session. In any
case, it is probably wiser to implement a custom Monitor than to use the callback functions.

New in version 0.2.0.

post_send(target=None, fuzz_data_logger=None, session=None)
This method iterates over all supplied post send callbacks and executes them. Their return values are
discarded, exceptions are caught and logged:

• BoofuzzTargetConnectionReset will log a failure

• BoofuzzTargetConnectionAborted will log an info

• BoofuzzTargetConnectionFailedError will log a failure

• BoofuzzSSLError will log either info or failure, depending on if the session ignores SSL/TLS errors.

• every other exception is logged as an error.

All exceptions are discarded after handling.

post_start_target(target=None, fuzz_data_logger=None, session=None)
Called after a target is started or restarted.

pre_send(target=None, fuzz_data_logger=None, session=None)
This method iterates over all supplied pre send callbacks and executes them. Their return values are dis-
carded, exceptions are catched and logged, but otherwise discarded.

restart_target(target=None, fuzz_data_logger=None, session=None)
This Method tries to restart a target. If no restart callbacks are set, it returns false; otherwise it returns true.

Returns
bool

4.5 Logging

Boofuzz provides flexible logging. All logging classes implement IFuzzLogger. Built-in logging classes are detailed
below.

To use multiple loggers at once, see FuzzLogger.

4.5.1 Logging Interface (IFuzzLogger)

class boofuzz.IFuzzLogger

Bases: object

Abstract class for logging fuzz data.

Usage while testing:

1. Open test case.

2. Open test step.

3. Use other log methods.

IFuzzLogger provides the logging interface for the Sulley framework and test writers.

The methods provided are meant to mirror functional test actions. Instead of generic debug/info/warning meth-
ods, IFuzzLogger provides a means for logging test cases, passes, failures, test steps, etc.

4.5. Logging 39

boofuzz Documentation, Release 0.4.2

This hypothetical sample output gives an idea of how the logger should be used:

Test Case: UDP.Header.Address 3300

Test Step: Fuzzing
Send: 45 00 13 ab 00 01 40 00 40 11 c9 . . .

Test Step: Process monitor check
Check OK

Test Step: DNP Check
Send: ff ff ff ff ff ff 00 0c 29 d1 10 . . . Recv: 00 0c 29 d1 10 81 00 30 a7 05 6e . . . Check: Reply is as
expected. Check OK

Test Case: UDP.Header.Address 3301

Test Step: Fuzzing
Send: 45 00 13 ab 00 01 40 00 40 11 c9 . . .

Test Step: Process monitor check
Check Failed: “Process returned exit code 1”

Test Step: DNP Check
Send: ff ff ff ff ff ff 00 0c 29 d1 10 . . . Recv: None Check: Reply is as expected. Check Failed

A test case is opened for each fuzzing case. A test step is opened for each high-level test step. Test steps can
include, for example:

• Fuzzing

• Set up (pre-fuzzing)

• Post-test cleanup

• Instrumentation checks

• Reset due to failure

Within a test step, a test may log data sent, data received, checks, check results, and other information.

abstract close_test()

Called after a test has been completed. Can be used to inform the operator or save the test log.

Param
None

Type
None

Returns
None

Return type
None

abstract close_test_case()

Called after a test case has been completed. Can be used to inform the operator or save the test case log.

Param
None

Type
None

40 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Returns
None

Return type
None

abstract log_check(description)
Records a check on the system under test. AKA “instrumentation check.”

Parameters
description (str) – Received data.

Returns
None

Return type
None

abstract log_error(description)
Records an internal error. This informs the operaor that the test was not completed successfully.

Parameters
description (str) – Received data.

Returns
None

Return type
None

abstract log_fail(description='')
Records a check that failed. This will flag a fuzzing case as a potential bug or anomaly.

Parameters
description (str) – Optional supplementary data.

Returns
None

Return type
None

abstract log_info(description)
Catch-all method for logging test information

Parameters
description (str) – Information.

Returns
None

Return type
None

abstract log_pass(description='')
Records a check that passed.

Parameters
description (str) – Optional supplementary data..

Returns
None

4.5. Logging 41

boofuzz Documentation, Release 0.4.2

Return type
None

abstract log_recv(data)
Records data as having been received from the target.

Parameters
data (bytes) – Received data.

Returns
None

Return type
None

abstract log_send(data)
Records data as about to be sent to the target.

Parameters
data (bytes) – Transmitted data

Returns
None

Return type
None

abstract open_test_case(test_case_id, name, index, *args, **kwargs)
Open a test case - i.e., a fuzzing mutation.

Parameters

• test_case_id – Test case name/number. Should be unique.

• name (str) – Human readable and unique name for test case.

• index (int) – Numeric index for test case

Returns
None

abstract open_test_step(description)
Open a test step - e.g., “Fuzzing”, “Pre-fuzz”, “Response Check.”

Parameters
description – Description of fuzzing step.

Returns
None

boofuzz.IFuzzLoggerBackend

alias of IFuzzLogger

42 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

4.5.2 Text Logging

class boofuzz.FuzzLoggerText(file_handle=<colorama.ansitowin32.StreamWrapper object>,
bytes_to_str=<function hex_to_hexstr>)

Bases: IFuzzLogger

This class formats FuzzLogger data for text presentation. It can be configured to output to STDOUT, or to a
named file.

Using two FuzzLoggerTexts, a FuzzLogger instance can be configured to output to both console and file.

INDENT_SIZE = 2

close_test()

Called after a test has been completed. Can be used to inform the operator or save the test log.

Param
None

Type
None

Returns
None

Return type
None

close_test_case()

Called after a test case has been completed. Can be used to inform the operator or save the test case log.

Param
None

Type
None

Returns
None

Return type
None

log_check(description)
Records a check on the system under test. AKA “instrumentation check.”

Parameters
description (str) – Received data.

Returns
None

Return type
None

log_error(description)
Records an internal error. This informs the operaor that the test was not completed successfully.

Parameters
description (str) – Received data.

4.5. Logging 43

boofuzz Documentation, Release 0.4.2

Returns
None

Return type
None

log_fail(description='')
Records a check that failed. This will flag a fuzzing case as a potential bug or anomaly.

Parameters
description (str) – Optional supplementary data.

Returns
None

Return type
None

log_info(description)
Catch-all method for logging test information

Parameters
description (str) – Information.

Returns
None

Return type
None

log_pass(description='')
Records a check that passed.

Parameters
description (str) – Optional supplementary data..

Returns
None

Return type
None

log_recv(data)
Records data as having been received from the target.

Parameters
data (bytes) – Received data.

Returns
None

Return type
None

log_send(data)
Records data as about to be sent to the target.

Parameters
data (bytes) – Transmitted data

Returns
None

44 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Return type
None

open_test_case(test_case_id, name, index, *args, **kwargs)
Open a test case - i.e., a fuzzing mutation.

Parameters

• test_case_id – Test case name/number. Should be unique.

• name (str) – Human readable and unique name for test case.

• index (int) – Numeric index for test case

Returns
None

open_test_step(description)
Open a test step - e.g., “Fuzzing”, “Pre-fuzz”, “Response Check.”

Parameters
description – Description of fuzzing step.

Returns
None

4.5.3 CSV Logging

class boofuzz.FuzzLoggerCsv(file_handle=<colorama.ansitowin32.StreamWrapper object>,
bytes_to_str=<function hex_to_hexstr>)

Bases: IFuzzLogger

This class formats FuzzLogger data for pcap file. It can be configured to output to a named file.

close_test()

Called after a test has been completed. Can be used to inform the operator or save the test log.

Param
None

Type
None

Returns
None

Return type
None

close_test_case()

Called after a test case has been completed. Can be used to inform the operator or save the test case log.

Param
None

Type
None

Returns
None

4.5. Logging 45

boofuzz Documentation, Release 0.4.2

Return type
None

log_check(description)
Records a check on the system under test. AKA “instrumentation check.”

Parameters
description (str) – Received data.

Returns
None

Return type
None

log_error(description)
Records an internal error. This informs the operaor that the test was not completed successfully.

Parameters
description (str) – Received data.

Returns
None

Return type
None

log_fail(description='')
Records a check that failed. This will flag a fuzzing case as a potential bug or anomaly.

Parameters
description (str) – Optional supplementary data.

Returns
None

Return type
None

log_info(description)
Catch-all method for logging test information

Parameters
description (str) – Information.

Returns
None

Return type
None

log_pass(description='')
Records a check that passed.

Parameters
description (str) – Optional supplementary data..

Returns
None

Return type
None

46 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

log_recv(data)
Records data as having been received from the target.

Parameters
data (bytes) – Received data.

Returns
None

Return type
None

log_send(data)
Records data as about to be sent to the target.

Parameters
data (bytes) – Transmitted data

Returns
None

Return type
None

open_test_case(test_case_id, name, index, *args, **kwargs)
Open a test case - i.e., a fuzzing mutation.

Parameters

• test_case_id – Test case name/number. Should be unique.

• name (str) – Human readable and unique name for test case.

• index (int) – Numeric index for test case

Returns
None

open_test_step(description)
Open a test step - e.g., “Fuzzing”, “Pre-fuzz”, “Response Check.”

Parameters
description – Description of fuzzing step.

Returns
None

4.5.4 Console-GUI Logging

class boofuzz.FuzzLoggerCurses(web_port=26000, web_address='localhost', window_height=40,
window_width=130, auto_scroll=True, max_log_lines=500,
wait_on_quit=True, min_refresh_rate=1000, bytes_to_str=<function
hex_to_hexstr>)

Bases: IFuzzLogger

This class formats FuzzLogger data for a console GUI using curses. This hasn’t been tested on Windows.

INDENT_SIZE = 2

4.5. Logging 47

boofuzz Documentation, Release 0.4.2

close_test()

Called after a test has been completed. Can be used to inform the operator or save the test log.

Param
None

Type
None

Returns
None

Return type
None

close_test_case()

Called after a test case has been completed. Can be used to inform the operator or save the test case log.

Param
None

Type
None

Returns
None

Return type
None

log_check(description)
Records a check on the system under test. AKA “instrumentation check.”

Parameters
description (str) – Received data.

Returns
None

Return type
None

log_error(description='', indent_size=2)
Records an internal error. This informs the operaor that the test was not completed successfully.

Parameters
description (str) – Received data.

Returns
None

Return type
None

log_fail(description='', indent_size=2)
Records a check that failed. This will flag a fuzzing case as a potential bug or anomaly.

Parameters
description (str) – Optional supplementary data.

Returns
None

48 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Return type
None

log_info(description)
Catch-all method for logging test information

Parameters
description (str) – Information.

Returns
None

Return type
None

log_pass(description='')
Records a check that passed.

Parameters
description (str) – Optional supplementary data..

Returns
None

Return type
None

log_recv(data)
Records data as having been received from the target.

Parameters
data (bytes) – Received data.

Returns
None

Return type
None

log_send(data)
Records data as about to be sent to the target.

Parameters
data (bytes) – Transmitted data

Returns
None

Return type
None

open_test_case(test_case_id, name, index, *args, **kwargs)
Open a test case - i.e., a fuzzing mutation.

Parameters

• test_case_id – Test case name/number. Should be unique.

• name (str) – Human readable and unique name for test case.

• index (int) – Numeric index for test case

Returns
None

4.5. Logging 49

boofuzz Documentation, Release 0.4.2

open_test_step(description)
Open a test step - e.g., “Fuzzing”, “Pre-fuzz”, “Response Check.”

Parameters
description – Description of fuzzing step.

Returns
None

4.5.5 FuzzLogger Object

class boofuzz.FuzzLogger(fuzz_loggers=None)
Bases: IFuzzLogger

Takes a list of IFuzzLogger objects and multiplexes logged data to each one.

FuzzLogger also maintains summary failure and error data.

Parameters
fuzz_loggers (list of IFuzzLogger) – IFuzzLogger objects to which to send log data.

close_test()

Called after a test has been completed. Can be used to inform the operator or save the test log.

Param
None

Type
None

Returns
None

Return type
None

close_test_case()

Called after a test case has been completed. Can be used to inform the operator or save the test case log.

Param
None

Type
None

Returns
None

Return type
None

failure_summary()

Return test summary string based on fuzz logger results.

Returns
Test summary string, may be multi-line.

log_check(description)
Records a check on the system under test. AKA “instrumentation check.”

50 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Parameters
description (str) – Received data.

Returns
None

Return type
None

log_error(description)
Records an internal error. This informs the operaor that the test was not completed successfully.

Parameters
description (str) – Received data.

Returns
None

Return type
None

log_fail(description='')
Records a check that failed. This will flag a fuzzing case as a potential bug or anomaly.

Parameters
description (str) – Optional supplementary data.

Returns
None

Return type
None

log_info(description)
Catch-all method for logging test information

Parameters
description (str) – Information.

Returns
None

Return type
None

log_pass(description='')
Records a check that passed.

Parameters
description (str) – Optional supplementary data..

Returns
None

Return type
None

log_recv(data)
Records data as having been received from the target.

Parameters
data (bytes) – Received data.

4.5. Logging 51

boofuzz Documentation, Release 0.4.2

Returns
None

Return type
None

log_send(data)
Records data as about to be sent to the target.

Parameters
data (bytes) – Transmitted data

Returns
None

Return type
None

property most_recent_test_id

Return a value (e.g. string) representing the most recent test case.

open_test_case(test_case_id, name, index, *args, **kwargs)
Open a test case - i.e., a fuzzing mutation.

Parameters

• test_case_id – Test case name/number. Should be unique.

• name (str) – Human readable and unique name for test case.

• index (int) – Numeric index for test case

Returns
None

open_test_step(description)
Open a test step - e.g., “Fuzzing”, “Pre-fuzz”, “Response Check.”

Parameters
description – Description of fuzzing step.

Returns
None

4.6 Protocol Definition

For the old school Spike-style static protocol definition format, see static protocol definition functions. The non-static
protocol definition described here is the newer (but still somewhat experimental) approach.

See the Quickstart guide for an intro to using boofuzz in general and a basic protocol definition example.

52 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

4.6.1 Overview

Requests are messages, Blocks are chunks within a message, and Primitives are the elements (bytes, strings, numbers,
checksums, etc.) that make up a Block/Request.

4.6.2 Example

Here is an example of an HTTP message. It demonstrates how to use Request, Block, and several primitives:

req = Request("HTTP-Request",children=(
Block("Request-Line", children=(

Group("Method", values= ["GET", "HEAD", "POST", "PUT", "DELETE", "CONNECT",
→˓"OPTIONS", "TRACE"]),

Delim("space-1", " "),
String("URI", "/index.html"),
Delim("space-2", " "),
String("HTTP-Version", "HTTP/1.1"),
Static("CRLF", "\r\n"),

)),
Block("Host-Line", children=(

String("Host-Key", "Host:"),
Delim("space", " "),
String("Host-Value", "example.com"),
Static("CRLF", "\r\n"),

)),
Static("CRLF", "\r\n"),

))

4.6.3 Request

boofuzz.Request(name=None, children=None)
Top level container. Can hold any block structure or primitive.

This can essentially be thought of as a super-block, root-block, daddy-block or whatever other alias you prefer.

Parameters

• name (str, optional) – Name of this request

• children (boofuzz.Fuzzable, optional) – Children of this request, defaults to None

4.6.4 Blocks

Block

boofuzz.Block(name=None, default_value=None, request=None, children=None, group=None, encoder=None,
dep=None, dep_value=None, dep_values=None, dep_compare='==', *args, **kwargs)

The basic building block. Can contain primitives, sizers, checksums or other blocks.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

4.6. Protocol Definition 53

boofuzz Documentation, Release 0.4.2

• default_value (Any, optional) – Value used when the element is not being fuzzed -
should typically represent a valid value, defaults to None

• request (boofuzz.Request, optional) – Request this block belongs to, defaults to
None

• children (boofuzz.Fuzzable, optional) – Children of this block, defaults to None

• group (str, optional) – Name of group to associate this block with, defaults to None

• encoder (callable, optional) – Optional pointer to a function to pass rendered data to
prior to return, defaults to None

• dep (str, optional) – Optional primitive whose specific value this block is dependant
on, defaults to None

• dep_value (bytes, optional) – Value that field “dep” must contain for block to be ren-
dered, defaults to None

• dep_values (list, optional) – Values that field “dep” may contain for block to be ren-
dered, defaults to None

• dep_compare (str, optional) – Comparison method to apply to dependency (==, !=, >,
>=, <, <=), defaults to None

Checksum

boofuzz.Checksum(name=None, block_name=None, request=None, algorithm='crc32', length=0, endian='<',
ipv4_src_block_name=None, ipv4_dst_block_name=None, *args, **kwargs)

Checksum bound to the block with the specified name.

The algorithm may be chosen by name with the algorithm parameter, or a custom function may be specified with
the algorithm parameter.

The length field is only necessary for custom algorithms. When using your own custom checksum function, the
return value should be the calculated checksum of the data.

Function signature: <function_name>(data_bytes). Returns a number represented as a bytes type.

Recursive checksums are supported; the checksum field itself will render as all zeros for the sake of checksum
or length calculations.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• block_name (str) – Name of target block for checksum calculations.

• request (boofuzz.Request, optional) – Request this block belongs to

• algorithm (str, function def name, optional) – Checksum algorithm to use from
this list, default is crc32 (crc32, crc32c, adler32, md5, sha1, ipv4, udp). See above for custom
checksum function example.

• length (int, optional) – Length of checksum, auto-calculated by default. Must be spec-
ified manually when using custom algorithm, defaults to 0

• endian (chr, optional) – Endianness of the bit field (LITTLE_ENDIAN: <,
BIG_ENDIAN: >), defaults to LITTLE_ENDIAN

• ipv4_src_block_name (str, optional) – Required for ‘udp’ algorithm. Name of block
yielding IPv4 source address, defaults to None

54 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

• ipv4_dst_block_name (str, optional) – Required for ‘udp’ algorithm. Name of block
yielding IPv4 destination address, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this block, defaults to true

Repeat

boofuzz.Repeat(name=None, block_name=None, request=None, min_reps=0, max_reps=25, step=1,
variable=None, default_value=None, *args, **kwargs)

Repeat the rendered contents of the specified block cycling from min_reps to max_reps counting by step.

By default renders to nothing. This block modifier is useful for fuzzing overflows in table entries. This block
modifier MUST come after the block it is being applied to.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• block_name (str, optional) – Name of block to repeat

• request (boofuzz.Request, optional) – Request this block belongs to, defaults to
None

• min_reps (int, optional) – Minimum number of block repetitions, defaults to 0

• max_reps (int, optional) – Maximum number of block repetitions, defaults to None

• step (int, optional) – Step count between min and max reps, defaults to 1

• variable (Boofuzz Integer Primitive, optional) – Repetitions will be derived
from this variable, disables fuzzing, defaults to None

• default_value (Raw) – Value used when the element is not being fuzzed - should typically
represent a valid value, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this block, defaults to true

Size

boofuzz.Size(name=None, block_name=None, request=None, offset=0, length=4, endian='<',
output_format='binary', inclusive=False, signed=False, math=None, *args, **kwargs)

Create a sizer block bound to the block with the specified name.

Size blocks that size their own parent or grandparent are allowed.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• block_name (str, optional) – Name of block to apply sizer to.

• request (boofuzz.Request, optional) – Request this block belongs to.

• offset (int, optional) – Offset for calculated size value, defaults to 0

• length (int, optional) – Length of sizer, defaults to 4

• endian (chr, optional) – Endianness of the bit field (LITTLE_ENDIAN: <,
BIG_ENDIAN: >), defaults to LITTLE_ENDIAN

4.6. Protocol Definition 55

boofuzz Documentation, Release 0.4.2

• output_format (str, optional) – Output format, “binary” or “ascii”, defaults to binary

• inclusive (bool, optional) – Should the sizer count its own length? Defaults to False

• signed (bool, optional) – Make size signed vs. unsigned (applicable only with for-
mat=”ascii”), defaults to False

• math (def, optional) – Apply the mathematical op defined in this function to the size,
defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this block, defaults to true

Aligned

boofuzz.Aligned(name=None, modulus=1, request=None, pattern=b'\x00', *args, **kwargs)
FuzzableBlock that aligns its contents to a certain number of bytes

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• modulus (int, optional) – Pad length of child content to this many bytes, defaults to 1

• request (boofuzz.Request, optional) – Request this block belongs to

• pattern (bytes, optional) – Pad using these byte(s)

• fuzzable (bool, optional) – Enable/disable fuzzing of this block, defaults to true

4.6.5 Primitives

Static

boofuzz.Static(name=None, default_value=None, *args, **kwargs)
Static primitives are fixed and not mutated while fuzzing.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (Raw, optional) – Raw static data

Simple

boofuzz.Simple(name=None, default_value=None, fuzz_values=None, *args, **kwargs)
Simple bytes value with manually specified fuzz values only.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (Raw, optional) – Raw static data

• fuzz_values (list, optional) – List of fuzz values, defaults to None. If empty, Simple
is equivalent to Static.

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

56 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Delim

boofuzz.Delim(name=None, default_value=' ', *args, **kwargs)
Represent a delimiter such as :,r,n, ,=,>,< etc. . . Mutations include repetition, substitution and exclusion.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (char, optional) – Value used when the element is not being fuzzed -
should typically represent a valid value.

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

Group

boofuzz.Group(name=None, values=None, default_value=None, encoding='ascii', *args, **kwargs)
This primitive represents a list of static values, stepping through each one on mutation.

You can tie a block to a group primitive to specify that the block should cycle through all possible mutations for
each value within the group. The group primitive is useful for example for representing a list of valid opcodes.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• values (list of bytes or list of str) – List of possible raw values this group can
take.

• default_value (str, optional) – Value used when the element is not being fuzzed -
should typically represent a valid value, defaults to None

• encoding (str, optional) – String encoding, ex: utf_16_le for Microsoft Unicode, de-
faults to ascii

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

RandomData

boofuzz.RandomData(name=None, default_value='', min_length=0, max_length=1, max_mutations=25,
step=None, *args, **kwargs)

Generate a random chunk of data while maintaining a copy of the original.

A random length range can be specified. For a static length, set min/max length to be the same.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (str or bytes, optional) – Value used when the element is not being
fuzzed - should typically represent a valid value, defaults to None

• min_length (int, optional) – Minimum length of random block, defaults to 0

• max_length (int, optional) – Maximum length of random block, defaults to 1

• max_mutations (int, optional) – Number of mutations to make before reverting to de-
fault, defaults to 25

4.6. Protocol Definition 57

boofuzz Documentation, Release 0.4.2

• step (int, optional) – If not None, step count between min and max reps, otherwise
random, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

String

boofuzz.String(name=None, default_value='', size=None, padding=b'\x00', encoding='utf-8', max_len=None,
*args, **kwargs)

Primitive that cycles through a library of “bad” strings.

The class variable ‘fuzz_library’ contains a list of smart fuzz values global across all instances. The ‘this_library’
variable contains fuzz values specific to the instantiated primitive. This allows us to avoid copying the near
~70MB fuzz_library data structure across each instantiated primitive.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (str) – Value used when the element is not being fuzzed - should typically
represent a valid value.

• size (int, optional) – Static size of this field, leave None for dynamic, defaults to None

• padding (chr, optional) – Value to use as padding to fill static field size, defaults to
“x00”

• encoding (str, optional) – String encoding, ex: utf_16_le for Microsoft Unicode, de-
faults to ascii

• max_len (int, optional) – Maximum string length, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

FromFile

boofuzz.FromFile(name=None, default_value=b'', filename=None, max_len=0, *args, **kwargs)
Cycles through a list of “bad” values from a file(s).

Takes filename and open the file(s) to read the values to use in fuzzing process. filename may contain glob
characters.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (bytes) – Default bytes value

• filename (str) – Filename pattern to load all fuzz value

• max_len (int, optional) – Maximum string length, defaults to 0

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

58 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Mirror

boofuzz.Mirror(name=None, primitive_name=None, request=None, *args, **kwargs)
Primitive used to keep updated with another primitive.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• primitive_name (str) – Name of target primitive.

• request (boofuzz.Request) – Request this primitive belongs to.

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

BitField

boofuzz.BitField(name=None, default_value=0, width=8, max_num=None, endian='<',
output_format='binary', signed=False, full_range=False, *args, **kwargs)

The bit field primitive represents a number of variable length and is used to define all other integer types.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (int, optional) – Default integer value, defaults to 0

• width (int, optional) – Width in bits, defaults to 8

• max_num (int, optional) – Maximum number to iterate up to, defaults to None

• endian (char, optional) – Endianness of the bit field (LITTLE_ENDIAN: <,
BIG_ENDIAN: >), defaults to LITTLE_ENDIAN

• output_format (str, optional) – Output format, “binary” or “ascii”, defaults to binary

• signed (bool, optional) – Make size signed vs. unsigned (applicable only with for-
mat=”ascii”), defaults to False

• full_range (bool, optional) – If enabled the field mutates through all possible values,
defaults to False

• fuzz_values (list, optional) – List of custom fuzz values to add to the normal muta-
tions, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

Byte

boofuzz.Byte(*args, **kwargs)
The byte sized bit field primitive.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (int, optional) – Default integer value, defaults to 0

• max_num (int, optional) – Maximum number to iterate up to, defaults to None

4.6. Protocol Definition 59

boofuzz Documentation, Release 0.4.2

• endian (char, optional) – Endianness of the bit field (LITTLE_ENDIAN: <,
BIG_ENDIAN: >), defaults to LITTLE_ENDIAN

• output_format (str, optional) – Output format, “binary” or “ascii”, defaults to binary

• signed (bool, optional) – Make size signed vs. unsigned (applicable only with for-
mat=”ascii”), defaults to False

• full_range (bool, optional) – If enabled the field mutates through all possible values,
defaults to False

• fuzz_values (list, optional) – List of custom fuzz values to add to the normal muta-
tions, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

Bytes

boofuzz.Bytes(name: str = None, default_value: bytes = b'', size: int = None, padding: bytes = b'\x00', max_len:
int = None, *args, **kwargs)

Primitive that fuzzes a binary byte string with arbitrary length.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (bytes, optional) – Value used when the element is not being fuzzed
- should typically represent a valid value, defaults to b””

• size (int, optional) – Static size of this field, leave None for dynamic, defaults to None

• padding (chr, optional) – Value to use as padding to fill static field size, defaults to
b”x00”

• max_len (int, optional) – Maximum string length, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

Word

boofuzz.Word(*args, **kwargs)
The 2 byte sized bit field primitive.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (int, optional) – Default integer value, defaults to 0

• max_num (int, optional) – Maximum number to iterate up to, defaults to None

• endian (char, optional) – Endianness of the bit field (LITTLE_ENDIAN: <,
BIG_ENDIAN: >), defaults to LITTLE_ENDIAN

• output_format (str, optional) – Output format, “binary” or “ascii”, defaults to binary

• signed (bool, optional) – Make size signed vs. unsigned (applicable only with for-
mat=”ascii”), defaults to False

60 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

• full_range (bool, optional) – If enabled the field mutates through all possible values,
defaults to False

• fuzz_values (list, optional) – List of custom fuzz values to add to the normal muta-
tions, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

DWord

boofuzz.DWord(*args, **kwargs)
The 4 byte sized bit field primitive.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (int, optional) – Default integer value, defaults to 0

• max_num (int, optional) – Maximum number to iterate up to, defaults to None

• endian (char, optional) – Endianness of the bit field (LITTLE_ENDIAN: <,
BIG_ENDIAN: >), defaults to LITTLE_ENDIAN

• output_format (str, optional) – Output format, “binary” or “ascii”, defaults to binary

• signed (bool, optional) – Make size signed vs. unsigned (applicable only with for-
mat=”ascii”), defaults to False

• full_range (bool, optional) – If enabled the field mutates through all possible values,
defaults to False

• fuzz_values (list, optional) – List of custom fuzz values to add to the normal muta-
tions, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

QWord

boofuzz.QWord(*args, **kwargs)
The 8 byte sized bit field primitive.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (int, optional) – Default integer value, defaults to 0

• max_num (int, optional) – Maximum number to iterate up to, defaults to None

• endian (char, optional) – Endianness of the bit field (LITTLE_ENDIAN: <,
BIG_ENDIAN: >), defaults to LITTLE_ENDIAN

• output_format (str, optional) – Output format, “binary” or “ascii”, defaults to binary

• signed (bool, optional) – Make size signed vs. unsigned (applicable only with for-
mat=”ascii”), defaults to False

• full_range (bool, optional) – If enabled the field mutates through all possible values,
defaults to False

4.6. Protocol Definition 61

boofuzz Documentation, Release 0.4.2

• fuzz_values (list, optional) – List of custom fuzz values to add to the normal muta-
tions, defaults to None

• fuzzable (bool, optional) – Enable/disable fuzzing of this primitive, defaults to true

4.6.6 Making Your Own Block/Primitive

Now I know what you’re thinking: “With that many sweet primitives and blocks available, what else could I ever
conceivably need? And yet, I am urged by joy to contribute my own sweet blocks!”

To make your own block/primitive:

1. Create an object that inherits from Fuzzable or FuzzableBlock

2. Override mutations and/or encode.

3. Optional: Create an accompanying static primitive function. See boofuzz’s __init__.py file for examples.

4. ???

5. Profit!

If your block depends on references to other blocks, the way a checksum or length field depends on other parts of the
message, see the Size source code for an example of how to avoid recursion issues, and Be Careful. :)

class boofuzz.Fuzzable(name=None, default_value=None, fuzzable=True, fuzz_values=None)
Bases: object

Parent class for all primitives and blocks.

When making new fuzzable types, one will typically override mutations() and/or encode().

mutations() is a generator function yielding mutations, typically of type bytes.

encode() is a function that takes a value and encodes it. The value comes from mutations() or
default_value. FuzzableBlock types can also encode the data generated by child nodes.

Implementors may also want to override num_mutations() – the default implementation manually exhausts
mutations() to get a number.

The rest of the methods are used by boofuzz to handle fuzzing and are typically not overridden.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• default_value (Any, optional) – Value used when the element is not being fuzzed -
should typically represent a valid value. Can be a static value, or a ReferenceValueTestCas-
eSession, defaults to None

• fuzzable (bool, optional) – Enable fuzzing of this primitive, defaults to True

• fuzz_values (list, optional) – List of custom fuzz values to add to the normal muta-
tions, defaults to None

property context_path

Dot-delimited string that describes the path up to this element. Configured after the object is attached to a
Request.

62 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

encode(value, mutation_context)
Takes a value and encodes/renders/serializes it to a bytes (byte string).

Optional if mutations() yields bytes.

Example: Yield strings with mutations() and encode them to UTF-8 using encode().

Default behavior: Return value.

Parameters

• value – Value to encode. Type should match the type yielded by mutations()

• mutation_context (MutationContext) – Context for current mutation, if any.

Returns
Encoded/serialized value.

Return type
bytes

property fuzzable

If False, this element should not be mutated in normal fuzzing.

get_mutations()

Iterate mutations. Used by boofuzz framework.

Yields
list of Mutation – Mutations

get_num_mutations()

get_value(mutation_context=None)
Helper method to get the currently applicable value.

This is either the default value, or the active mutation value as dictated by mutation_context.

Parameters
mutation_context (MutationContext) –

Returns:

mutations(default_value)
Generator to yield mutation values for this element.

Values are either plain values or callable functions that take a “default value” and mutate it. Functions
are used when the default or “normal” value influences the fuzzed value. Functions are used because the
“normal” value is sometimes dynamic and not known at the time of generation.

Each mutation should be a pre-rendered value. That is, it must be suitable to pass to encode().

Default: Empty iterator.

Parameters
default_value –

property name

Element name, should be unique for each instance.

Return type
str

name_counter = 0

4.6. Protocol Definition 63

boofuzz Documentation, Release 0.4.2

num_mutations(default_value)
Return the total number of mutations for this element (not counting “fuzz_values”).

Default implementation exhausts the mutations() generator, which is inefficient. Override if you can provide
a value more efficiently, or if exhausting the mutations() generator has side effects.

Parameters
default_value – Use if number of mutations depends on the default value. Provided by
FuzzableWrapper. Note: It is generally good behavior to have a consistent number of muta-
tions for a given default value length.

Returns
Number of mutated forms this primitive can take

Return type
int

original_value(test_case_context=None)
Original, non-mutated value of element.

Parameters
test_case_context (ProtocolSession) – Used to resolve ReferenceValueTestCaseSes-
sion type default values.

Returns:

property qualified_name

Dot-delimited name that describes the request name and the path to the element within the request.

Example: “request1.block1.block2.node1”

render(mutation_context=None)
Render after applying mutation, if applicable. :type mutation_context: MutationContext

property request

Reference to the Request to which this object is attached.

stop_mutations()

Stop yielding mutations on the currently running mutations() call.

Used by boofuzz to stop fuzzing an element when it’s already caused several failures.

Returns
None

Return type
NoneType

class boofuzz.FuzzableBlock(name=None, request=None, children=None, *args, **kwargs)
Bases: Fuzzable

Fuzzable type designed to have children elements.

FuzzableBlock overrides the following methods, changing the default behavior for any type based on Fuzzable-
Block:

1. mutations() Iterate through the mutations yielded by all child nodes.

2. num_mutations() Sum the mutations represented by each child node.

3. encode() Call get_child_data().

FuzzableBlock adds the following methods:

64 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

1. get_child_data() Render and concatenate all child nodes.

2. push() Add an additional child node; generally used only internally.

Parameters

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• request (boofuzz.Request, optional) – Request this block belongs to, defaults to
None

• children (boofuzz.Fuzzable, optional) – List of child nodes (typically given to Fuz-
zableBlock types)m defaults to None

encode(value, mutation_context)
Takes a value and encodes/renders/serializes it to a bytes (byte string).

Optional if mutations() yields bytes.

Example: Yield strings with mutations() and encode them to UTF-8 using encode().

Default behavior: Return value.

Parameters

• value – Value to encode. Type should match the type yielded by mutations()

• mutation_context (MutationContext) – Context for current mutation, if any.

Returns
Encoded/serialized value.

Return type
bytes

get_child_data(mutation_context)
Get child or referenced data for this node.

For blocks that reference other data from the message structure (e.g. size, checksum, blocks). See Fuzz-
ableBlock for an example.

Parameters
mutation_context (MutationContext) – Mutation context.

Returns
Child data.

Return type
bytes

mutations(default_value, skip_elements=None)
Generator to yield mutation values for this element.

Values are either plain values or callable functions that take a “default value” and mutate it. Functions
are used when the default or “normal” value influences the fuzzed value. Functions are used because the
“normal” value is sometimes dynamic and not known at the time of generation.

Each mutation should be a pre-rendered value. That is, it must be suitable to pass to encode().

Default: Empty iterator.

Parameters
default_value –

4.6. Protocol Definition 65

boofuzz Documentation, Release 0.4.2

num_mutations(default_value=None)
Return the total number of mutations for this element (not counting “fuzz_values”).

Default implementation exhausts the mutations() generator, which is inefficient. Override if you can provide
a value more efficiently, or if exhausting the mutations() generator has side effects.

Parameters
default_value – Use if number of mutations depends on the default value. Provided by
FuzzableWrapper. Note: It is generally good behavior to have a consistent number of muta-
tions for a given default value length.

Returns
Number of mutated forms this primitive can take

Return type
int

push(item)

Push a child element onto this block’s stack.

Parameters
item (Fuzzable) – Some wrapped Fuzzable element

Returns: None

4.7 Static Protocol Definition

Protocol definition via static functions in boofuzz is inherited from Spike. See protocol definition functions for a newer,
if still experimental, format.

See the Quickstart guide for an intro to using boofuzz in general.

Requests are messages, Blocks are chunks within a message, and Primitives are the elements (bytes, strings, numbers,
checksums, etc.) that make up a Block/Request.

4.7.1 Request Manipulation

boofuzz.s_initialize(name)
Initialize a new block request. All blocks / primitives generated after this call apply to the named request. Use
s_switch() to jump between factories.

Parameters
name (str) – Name of request

boofuzz.s_get(name=None)
Return the request with the specified name or the current request if name is not specified. Use this to switch from
global function style request manipulation to direct object manipulation. Example:

req = s_get("HTTP BASIC")
print(req.num_mutations())

The selected request is also set as the default current. (ie: s_switch(name) is implied).

Parameters
name (str) – (Optional, def=None) Name of request to return or current request if name is None.

66 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Return type
blocks.Request

Returns
The requested request.

boofuzz.s_num_mutations()

Determine the number of repetitions we will be making.

Return type
int

Returns
Number of mutated forms this primitive can take.

boofuzz.s_switch(name)
Change the current request to the one specified by “name”.

Parameters
name (str) – Name of request

4.7.2 Block Manipulation

boofuzz.s_block(name=None, group=None, encoder=None, dep=None, dep_value=None, dep_values=None,
dep_compare='==')

Open a new block under the current request. The returned instance supports the “with” interface so it will be
automatically closed for you:

with s_block("header"):
s_static("\x00\x01")
if s_block_start("body"):

...

Parameters

• name (str, optional) – Name of block being opened

• group (str, optional) – (Optional, def=None) Name of group to associate this block
with

• encoder (Function Pointer, optional) – (Optional, def=None) Optional pointer to a
function to pass rendered data to prior to return

• dep (str, optional) – (Optional, def=None) Optional primitive whose specific value this
block is dependant on

• dep_value (bytes, optional) – (Optional, def=None) Value that field “dep” must con-
tain for block to be rendered

• dep_values (List of bytes, optional) – (Optional, def=None) Values that field
“dep” may contain for block to be rendered

• dep_compare (str, optional) – (Optional, def=”==”) Comparison method to use on
dependency (==, !=, >, >=, <, <=)

boofuzz.s_block_start(name=None, *args, **kwargs)
Open a new block under the current request. This routine always returns an instance so you can make your fuzzer
pretty with indenting:

4.7. Static Protocol Definition 67

boofuzz Documentation, Release 0.4.2

if s_block_start("header"):
s_static("\x00\x01")
if s_block_start("body"):

...
s_block_close()

:note Prefer using s_block to this function directly :see s_block

boofuzz.s_block_end(name=None)
Close the last opened block. Optionally specify the name of the block being closed (purely for aesthetic purposes).

Parameters
name (str) – (Optional, def=None) Name of block to closed.

boofuzz.s_checksum(block_name=None, algorithm='crc32', length=0, endian='<', fuzzable=True, name=None,
ipv4_src_block_name=None, ipv4_dst_block_name=None)

Checksum bound to the block with the specified name.

The algorithm may be chosen by name with the algorithm parameter, or a custom function may be specified with
the algorithm parameter.

The length field is only necessary for custom algorithms.

Recursive checksums are supported; the checksum field itself will render as all zeros for the sake of checksum
or length calculations.

Parameters

• block_name (str, optional) – Name of target block for checksum calculations.

• algorithm (str, function, optional) – Checksum algorithm to use. (crc32, crc32c,
adler32, md5, sha1, ipv4, udp) Pass a function to use a custom algorithm. This function has
to take and return byte-type data, defaults to crc32

• length (int, optional) – Length of checksum, auto-calculated by default. Must be spec-
ified manually when using custom algorithm, defaults to 0

• endian (chr, optional) – Endianness of the bit field (LITTLE_ENDIAN: <,
BIG_ENDIAN: >), defaults to LITTLE_ENDIAN

• fuzzable (bool, optional) – Enable/disable fuzzing.

• name (str, optional) – Name, for referencing later. Names should always be provided,
but if not, a default name will be given, defaults to None

• ipv4_src_block_name (str, optional) – Required for ‘udp’ algorithm. Name of block
yielding IPv4 source address, defaults to None

• ipv4_dst_block_name (str, optional) – Required for ‘udp’ algorithm. Name of block
yielding IPv4 destination address, defaults to None

boofuzz.s_repeat(block_name=None, min_reps=0, max_reps=25, step=1, variable=None, fuzzable=True,
name=None)

Repeat the rendered contents of the specified block cycling from min_reps to max_reps counting by step. By
default renders to nothing. This block modifier is useful for fuzzing overflows in table entries. This block modifier
MUST come after the block it is being applied to.

See
Aliases: s_repeater()

Parameters

68 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

• block_name (str) – (Optional, def=None) Name of block to repeat

• min_reps (int) – (Optional, def=0) Minimum number of block repetitions

• max_reps (int) – (Optional, def=25) Maximum number of block repetitions

• step (int) – (Optional, def=1) Step count between min and max reps

• variable (Sulley Integer Primitive) – (Optional, def=None) An integer primitive
which will specify the number of repitions

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

boofuzz.s_size(block_name=None, offset=0, length=4, endian='<', output_format='binary', inclusive=False,
signed=False, math=None, fuzzable=True, name=None)

Create a sizer block bound to the block with the specified name. You can not create a sizer for any currently
open blocks.

See
Aliases: s_sizer()

Parameters

• block_name (str, optional) – Name of block to apply sizer to.

• offset (int, optional) – Offset for calculated size value, defaults to 0

• length (int, optional) – Length of sizer, defaults to 4

• endian (chr, optional) – Endianness of the bit field (LITTLE_ENDIAN: <,
BIG_ENDIAN: >), defaults to LITTLE_ENDIAN

• output_format (str, optional) – Output format, “binary” or “ascii”, defaults to binary

• inclusive (bool, optional) – Should the sizer count its own length? Defaults to False

• signed (bool, optional) – Make size signed vs. unsigned (applicable only with for-
mat=”ascii”), defaults to False

• math (def, optional) – Apply the mathematical op defined in this function to the size,
defaults to None

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this sizer

• name (str) – Name of this sizer field

boofuzz.s_update(name, value)
Update the value of the named primitive in the currently open request.

Parameters

• name (str) – Name of object whose value we wish to update

• value (Mixed) – Updated value

4.7. Static Protocol Definition 69

boofuzz Documentation, Release 0.4.2

4.7.3 Primitive Definition

boofuzz.s_binary(value, name=None)
Parse a variable format binary string into a static value and push it onto the current block stack.

Parameters

• value (str) – Variable format binary string

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

boofuzz.s_delim(value=' ', fuzzable=True, name=None)
Push a delimiter onto the current block stack.

Parameters

• value (Character) – (Optional, def=” “)Original value

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

boofuzz.s_group(name=None, values=None, default_value=None)
This primitive represents a list of static values, stepping through each one on mutation. You can tie a block to a
group primitive to specify that the block should cycle through all possible mutations for each value within the
group. The group primitive is useful for example for representing a list of valid opcodes.

Parameters

• name (str) – (Optional, def=None) Name of group

• values (List or raw data) – (Optional, def=None) List of possible raw values this
group can take.

• default_value (str or bytes) – (Optional, def=None) Specifying a value when
fuzzing() is complete

boofuzz.s_lego(lego_type, value=None, options=())
Legos are pre-built blocks. . . TODO: finish this doc

Parameters

• lego_type (str) – Function that represents a lego

• value – Original value

• options – Options to pass to lego.

boofuzz.s_random(value='', min_length=0, max_length=1, num_mutations=25, fuzzable=True, step=None,
name=None)

Generate a random chunk of data while maintaining a copy of the original. A random length range can be
specified. For a static length, set min/max length to be the same.

Parameters

• value (str or bytes) – (Optional, def=””) Original value

• min_length (int) – (Optional, def=0) Minimum length of random block

• max_length (int) – (Optional, def=1) Maximum length of random block

• num_mutations (int) – (Optional, def=25) Number of mutations to make before reverting
to default

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

70 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

• step (int) – (Optional, def=None) If not null, step count between min and max reps, oth-
erwise random

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

boofuzz.s_static(value=None, name=None)
Push a static value onto the current block stack.

See
Aliases: s_dunno(), s_raw(), s_unknown()

Parameters

• value (Raw) – Raw static data

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

boofuzz.s_string(value='', size=None, padding=b'\x00', encoding='ascii', fuzzable=True, max_len=None,
name=None)

Push a string onto the current block stack.

Parameters

• value (str) – (Optional, def=””)Default string value

• size (int) – (Optional, def=None) Static size of this field, leave None for dynamic.

• padding (Character) – (Optional, def=”x00”) Value to use as padding to fill static field
size.

• encoding (str) – (Optional, def=”ascii”) String encoding, ex: utf_16_le for Microsoft Uni-
code.

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• max_len (int) – (Optional, def=None) Maximum string length

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

boofuzz.s_from_file(value=b'', filename=None, encoding='ascii', fuzzable=True, max_len=0, name=None)
Push a value from file onto the current block stack.

Parameters

• value (bytes) – (Optional, def=b””) Default bytes value

• filename (str) – (Optional, def=None) Filename pattern to load all fuzz value

• encoding (str) – (DEPRECIATED, def=”ascii”) String encoding, ex: utf_16_le for Mi-
crosoft Unicode.

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• max_len (int) – (Optional, def=0) Maximum string length

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

boofuzz.s_bit_field(value=0, width=8, endian='<', output_format='binary', signed=False, full_range=False,
fuzzable=True, name=None, fuzz_values=None)

Push a variable length bit field onto the current block stack.

See
Aliases: s_bit(), s_bits()

Parameters

4.7. Static Protocol Definition 71

boofuzz Documentation, Release 0.4.2

• value (int) – (Optional, def=0) Default integer value

• width (int) – (Optional, def=8) Width of bit fields

• endian (Character) – (Optional, def=LITTLE_ENDIAN) Endianness of the bit field (LIT-
TLE_ENDIAN: <, BIG_ENDIAN: >)

• output_format (str) – (Optional, def=binary) Output format, “binary” or “ascii”

• signed (bool) – (Optional, def=False) Make size signed vs. unsigned (applicable only with
format=”ascii”)

• full_range (bool) – (Optional, def=False) If enabled the field mutates through all possible
values.

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

• fuzz_values (list) – List of custom fuzz values to add to the normal mutations.

boofuzz.s_byte(value=0, endian='<', output_format='binary', signed=False, full_range=False, fuzzable=True,
name=None, fuzz_values=None)

Push a byte onto the current block stack.

See
Aliases: s_char()

Parameters

• value (int|byte) – (Optional, def=0) Default integer value

• endian (Character) – (Optional, def=LITTLE_ENDIAN) Endianess of the bit field (LIT-
TLE_ENDIAN: <, BIG_ENDIAN: >)

• output_format (str) – (Optional, def=binary) Output format, “binary” or “ascii”

• signed (bool) – (Optional, def=False) Make size signed vs. unsigned (applicable only with
format=”ascii”)

• full_range (bool) – (Optional, def=False) If enabled the field mutates through all possible
values.

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

• fuzz_values (list) – List of custom fuzz values to add to the normal mutations.

boofuzz.s_bytes(value=b'', size=None, padding=b'\x00', fuzzable=True, max_len=None, name=None)
Push a bytes field of arbitrary length onto the current block stack.

Parameters

• value (bytes) – (Optional, def=b””)Default binary value

• size (int) – (Optional, def=None) Static size of this field, leave None for dynamic.

• padding (chr) – (Optional, def=b”x00”) Value to use as padding to fill static field size.

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• max_len (int) – (Optional, def=None) Maximum string length

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

72 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

boofuzz.s_word(value=0, endian='<', output_format='binary', signed=False, full_range=False, fuzzable=True,
name=None, fuzz_values=None)

Push a word onto the current block stack.

See
Aliases: s_short()

Parameters

• value ((Optional, def=0) int) – Default integer value

• endian (chr) – (Optional, def=LITTLE_ENDIAN) Endianess of the bit field (LIT-
TLE_ENDIAN: <, BIG_ENDIAN: >)

• output_format (str) – (Optional, def=binary) Output format, “binary” or “ascii”

• signed (bool) – (Optional, def=False) Make size signed vs. unsigned (applicable only with
format=”ascii”)

• full_range (bool) – (Optional, def=False) If enabled the field mutates through all possible
values.

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

• fuzz_values (list) – List of custom fuzz values to add to the normal mutations.

boofuzz.s_dword(value=0, endian='<', output_format='binary', signed=False, full_range=False, fuzzable=True,
name=None, fuzz_values=None)

Push a double word onto the current block stack.

See
Aliases: s_long(), s_int()

Parameters

• value ((Optional, def=0) int) – Default integer value

• endian (Character) – (Optional, def=LITTLE_ENDIAN) Endianess of the bit field (LIT-
TLE_ENDIAN: <, BIG_ENDIAN: >)

• output_format (str) – (Optional, def=binary) Output format, “binary” or “ascii”

• signed (bool) – (Optional, def=False) Make size signed vs. unsigned (applicable only with
format=”ascii”)

• full_range (bool) – (Optional, def=False) If enabled the field mutates through all possible
values.

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

• fuzz_values (list) – List of custom fuzz values to add to the normal mutations.

boofuzz.s_qword(value=0, endian='<', output_format='binary', signed=False, full_range=False, fuzzable=True,
name=None, fuzz_values=None)

Push a quad word onto the current block stack.

See
Aliases: s_double()

Parameters

4.7. Static Protocol Definition 73

boofuzz Documentation, Release 0.4.2

• value ((Optional, def=0) int) – Default integer value

• endian (Character) – (Optional, def=LITTLE_ENDIAN) Endianess of the bit field (LIT-
TLE_ENDIAN: <, BIG_ENDIAN: >)

• output_format (str) – (Optional, def=binary) Output format, “binary” or “ascii”

• signed (bool) – (Optional, def=False) Make size signed vs. unsigned (applicable only with
format=”ascii”)

• full_range (bool) – (Optional, def=False) If enabled the field mutates through all possible
values.

• fuzzable (bool) – (Optional, def=True) Enable/disable fuzzing of this primitive

• name (str) – (Optional, def=None) Specifying a name gives you direct access to a primitive

• fuzz_values (list) – List of custom fuzz values to add to the normal mutations.

4.8 Other Modules

4.8.1 Test Case Session Reference

class boofuzz.ProtocolSessionReference(name: str, default_value)
Bases: object

Refers to a dynamic value received or generated in the context of an individual test case.

Pass this object as a primitive’s default_value argument, and make sure you set the referred-to value using
callbacks, e.g. post_test_case_callbacks (see Session).

Parameters

• name (str) – Refers to a test case session key. Must be set in the ProtocolSession by the
time the value is required in the protocol definition. See Session.

• default_value – The default value, used if the element must be rendered outside the con-
text of a test case, or sometimes for generating mutations.

4.8.2 Test Case Context

class boofuzz.ProtocolSession(session_variables=_Nothing.NOTHING, previous_message=None,
current_message=None)

Bases: object

Contains a session_variables dictionary used to store data specific to a single fuzzing test case.

Generally, values in session_variableswill be set in a callback function, e.g. post_test_case_callbacks
(see Session). Variables may be used in a later callback function, or by a ProtocolSessionReference object.

74 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

4.8.3 Helpers

boofuzz.helpers.calculate_four_byte_padding(string, character='\x00')

boofuzz.helpers.crc16(string, value=0)
CRC-16 poly: p(x) = x**16 + x**15 + x**2 + 1

@param string: Data over which to calculate crc. @param value: Initial CRC value.

boofuzz.helpers.crc32(string)

boofuzz.helpers.format_log_msg(msg_type, description=None, data=None, indent_size=2, timestamp=None,
truncated=False, format_type='terminal')

boofuzz.helpers.format_msg(msg, indent_level, indent_size, timestamp=None)

boofuzz.helpers.get_boofuzz_version()

Gets the currently installed boofuzz version

Return type
str

Returns
Boofuzz version as string

boofuzz.helpers.get_max_udp_size()

Crazy CTypes magic to do a getsockopt() which determines the max UDP payload size in a platform-agnostic
way.

Deprecated since version 0.2.0: Use UDPSocketConnection.max_payload() instead.

Returns
The maximum length of a UDP packet the current platform supports

Return type
int

boofuzz.helpers.get_time_stamp()

boofuzz.helpers.hex_str(s)
Returns a hex-formatted string based on s.

Parameters
s (bytes) – Some string.

Returns
Hex-formatted string representing s.

Return type
str

boofuzz.helpers.hex_to_hexstr(input_bytes)
Render input_bytes as ASCII-encoded hex bytes, followed by a best effort utf-8 rendering.

Parameters
input_bytes (bytes) – Arbitrary bytes

Returns
Printable string

Return type
str

4.8. Other Modules 75

boofuzz Documentation, Release 0.4.2

boofuzz.helpers.ip_str_to_bytes(ip)
Convert an IP string to a four-byte bytes.

Parameters
ip – IP address string, e.g. ‘127.0.0.1’

:return 4-byte representation of ip, e.g. b’’ :rtype bytes

:raises ValueError if ip is not a legal IP address.

boofuzz.helpers.ipv4_checksum(msg)
Return IPv4 checksum of msg. :param msg: Message to compute checksum over. :type msg: bytes

Returns
IPv4 checksum of msg.

Return type
int

boofuzz.helpers.mkdir_safe(directory_name, file_included=False)
Creates directory_name and subdirectories. If file_included is true, removes final element of the path

boofuzz.helpers.parse_target(target_name)

boofuzz.helpers.parse_test_case_name(test_case)
Parse a test case name into a message path and a list of mutation names.

Example

Input: “message1:[message1.first_byte:2, message1.second_byte:1, message1.third_byte:2]” Output: [“mes-
sage1”], [“message1.first_byte:2”, “message1.second_byte:1”, “message1.third_byte:2”]

Returns
A message path (list of message names) and a list of mutation names.

boofuzz.helpers.path_exists(path)
To avoid polluting files with import os

boofuzz.helpers.pause_for_signal()

Pauses the current thread in a way that can still receive signals like SIGINT from Ctrl+C.

Implementation notes:

• Linux uses signal.pause()

• Windows uses a loop that sleeps for 1 ms at a time, allowing signals to interrupt the thread fairly
quickly.

Returns
None

Return type
None

boofuzz.helpers.str_to_bytes(value, encoding='utf-8', errors='replace')

76 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

boofuzz.helpers.udp_checksum(msg, src_addr, dst_addr)
Return UDP checksum of msg.

Recall that the UDP checksum involves creating a sort of pseudo IP header. This header requires the source and
destination IP addresses, which this function takes as parameters.

If msg is too big, the checksum is undefined, and this method will truncate it for the sake of checksum calculation.
Note that this means the checksum will be invalid. This loosey goosey error checking is done to support fuzz
tests which at times generate huge, invalid packets.

Parameters

• msg (bytes) – Message to compute checksum over.

• src_addr (bytes) – Source IP address – 4 bytes.

• dst_addr (bytes) – Destination IP address – 4 bytes.

Returns
UDP checksum of msg.

Return type
int

boofuzz.helpers.uuid_bin_to_str(uuid)
Convert a binary UUID to human readable string.

@param uuid: bytes representing UUID.

boofuzz.helpers.uuid_str_to_bin(uuid)
Converts a UUID string to binary form.

Expected string input format is same as uuid_bin_to_str()’s output format.

Ripped from Core Impacket.

Parameters
uuid (str) – UUID string to convert to bytes.

Returns
UUID as bytes.

Return type
bytes

4.8.4 IP Constants

This file contains constants for the IPv4 protocol.

Changed in version 0.2.0: ip_constants has been moved into the connections subpackage. The full path is now boo-
fuzz.connections.ip_constants

boofuzz.connections.ip_constants.UDP_MAX_LENGTH_THEORETICAL = 65535

Theoretical maximum length of a UDP packet, based on constraints in the UDP packet format. WARNING! a
UDP packet cannot actually be this long in the context of IPv4!

boofuzz.connections.ip_constants.UDP_MAX_PAYLOAD_IPV4_THEORETICAL = 65507

Theoretical maximum length of a UDP payload based on constraints in the UDP and IPv4 packet formats.
WARNING! Some systems may set a payload limit smaller than this.

4.8. Other Modules 77

boofuzz Documentation, Release 0.4.2

4.8.5 PED-RPC

Boofuzz provides an RPC primitive to host monitors on remote machines. The main boofuzz instance acts as a client
that connects to (remotely) running RPC server instances, transparently calling functions that are called on the instance
of the client on the server instance and returning their result as a python object. As a general rule, data that’s passed
over the RPC interface needs to be able to be pickled.

Note that PED-RPC provides no authentication or authorization in any form. It is advisable to only run it on trusted
networks.

class boofuzz.monitors.pedrpc.Client(host, port)
Bases: object

on_new_server(new_server)
Override this Method in a child class to be notified when the RPC server was restarted.

class boofuzz.monitors.pedrpc.Server(host, port)
Bases: object

The main PED-RPC Server class. To implement an RPC server, inherit from this class. Call serve_forever
to start listening for RPC commands.

serve_forever()

stop()

4.8.6 DCE-RPC

boofuzz.utils.dcerpc.bind(uuid, version)
Generate the data necessary to bind to the specified interface.

boofuzz.utils.dcerpc.bind_ack(data)
Ensure the data is a bind ack and that the

boofuzz.utils.dcerpc.request(opnum, data)
Return a list of packets broken into 5k fragmented chunks necessary to make the RPC request.

4.8.7 Crash binning

@author: Pedram Amini @license: GNU General Public License 2.0 or later @contact: pedram.amini@gmail.com
@organization: www.openrce.org

class boofuzz.utils.crash_binning.CrashBinStruct

Bases: object

class boofuzz.utils.crash_binning.CrashBinning

Bases: object

@todo: Add MySQL import/export.

bins = {}

78 Chapter 4. Public Protocol Libraries

mailto:pedram.amini@gmail.com

boofuzz Documentation, Release 0.4.2

crash_synopsis(crash=None)
For the supplied crash, generate and return a report containing the disassemly around the violating address,
the ID of the offending thread, the call stack and the SEH unwind. If not crash is specified, then call through
to last_crash_synopsis() which returns the same information for the last recorded crash.

@see: crash_synopsis()

@type crash: CrashBinStruct @param crash: (Optional, def=None) Crash object to generate report on

@rtype: str @return: Crash report

export_file(file_name)
Dump the entire object structure to disk.

@see: import_file()

@type file_name: str @param file_name: File name to export to

@rtype: CrashBinning @return: self

import_file(file_name)
Load the entire object structure from disk.

@see: export_file()

@type file_name: str @param file_name: File name to import from

@rtype: CrashBinning @return: self

last_crash = None

last_crash_synopsis()

For the last recorded crash, generate and return a report containing the disassemly around the violating
address, the ID of the offending thread, the call stack and the SEH unwind.

@see: crash_synopsis()

@rtype: String @return: Crash report

pydbg = None

record_crash(pydbg, extra=None)
Given a PyDbg instantiation that at the current time is assumed to have “crashed” (access violation for
example) record various details such as the disassemly around the violating address, the ID of the offending
thread, the call stack and the SEH unwind. Store the recorded data in an internal dictionary, binning them
by the exception address.

@type pydbg: pydbg @param pydbg: Instance of pydbg @type extra: Mixed @param extra: (Optional,
Def=None) Whatever extra data you want to store with this bin

4.8.8 EventHook

class boofuzz.event_hook.EventHook

Bases: object

An EventHook that registers events using +=and -=.

Based on spassig’s solution here: http://stackoverflow.com/a/1094423/461834

4.8. Other Modules 79

http://stackoverflow.com/a/1094423/461834

boofuzz Documentation, Release 0.4.2

fire(*args, **kwargs)
Call each event handler in sequence.

@param args: Forwarded to event handler. @param kwargs: Forwarded to event handler.

@return: None

4.9 Changelog

4.9.1 v0.4.2

Features

• Remove six compatibility module.

• Remove Python 2 compatibility code.

• Remove specifying object inheritance in classes.

• Added Web UI listening on specific IP address.

• Added Python 3.11 compatibility.

Fixes

• Specified encoding on file write rather than assuming default encoding.

• Changed type of default_value from string to bytes for FromFile.

• s_update primitive was out of date.

• The minimum supported Python version is now 3.8.

• Removed duplicates from BitField primitive.

• Fixed unwanted deprecation warning when using Session.fuzz(name=name).

• Changed type of dep_value argument of Block to bytes and added type checks.

• Split sessions.py into multiple files.

• Using poetry as package build system.

4.9.2 v0.4.1

Features

• Added support for fuzzing NETCONF servers with the NETCONFConnection class.

• Add support and tests for Python 3.10.

• Added Session arg db_filename to modify the location of the log database.

80 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Fixes

• Fixed check for when to enable the web app.

• Documented the possibility to disable the web app.

• Correctly initialize all children of a request which inherits from FuzzableBlock.

• Added type checking for arguments of Bytes primitive to prevent incorrect use.

• Fixed TypeError in s_binary initialization.

• Remove redundant unicode strings.

4.9.3 v0.4.0

Features

• Fuzzing CLI – Use main_helper() to use boofuzz’s generic fuzzing CLI with your script.

• Combinatorial fuzzing – now fuzzes multiple mutations at once by default.

• Test cases can now be specified and re-run by name.

• Implemented visual request-graph rendering functions for Session.

• Added to web UIL: runtime, exec speed, current test case name.

• Added simple custom checksum and example usage.

• Added Simple primitive that uses only the specified values for fuzzing.

• Added Float primitive with support for IEEE 754 encoding.

• Added an example for s_float/Float usage.

Fixes

• Clarified documentation of custom checksum function for Checksum primitive.

• String and RandomData primitives now use a local and independent instance of random.

• The minimum supported Python version is now 3.6.

• Fixed two memory leaks in the fuzz logger.

4.9.4 v0.3.0

Features

• Memory optimization: Efficient mutation generation and smarter string reuse – decrease memory consumption
by orders of magnitude.

• Aligned block: Aligns content length to multiple of certain number of bytes.

• Relative names: Name references for Checksum, Size, etc. now resolve absolute and relative names. Block and
primitive names no longer need to be globally unique within a message, they only need to be locally unique
within a block.

4.9. Changelog 81

boofuzz Documentation, Release 0.4.2

• Passing data between messages: Callbacks now have a TestCaseContext object to which one can save data to be
used later in the test case. TestCaseSessionReference can be passed as a default value in a protocol definition.
The name it references must have been saved by the time that message in the protocol is reached.

• Fuzzable rewrite: Simpler definitions for new fuzz primitives. See static.py for an example of a very simple
primitive.

• Protocol definition: Protocols can now be defined with an object oriented rather than static approach.

• Independent mutation and encoding steps: Will enable multiple mutations and code coverage feedback.

• Procmon: Additional debug steps. Partial backwards compatibility for old interface.

• ProcessMonitorLocal allows running procmon as part of fuzzer process.

• Network monitor: improved network interface discovery (Linux support).

• Added support for fuzzing Unix sockets with the UnixSocketConnection class.

• Added metadata to ProtocolSession to support callbacks – current_message, previous_message.

• All primitive arguments are now optional keyword arguments.

Fixes

• Various web interface fixes.

• Various refactors and simplifications.

• Fewer duplicates from Group primitives.

• Network monitor: fixed data_bytes calculation and PcapThread synchronization.

• Fixed a crash when using the network monitor.

• Session can now be “quiet” by passing an empty list of loggers.

• Process Monitor: fixed Thread.isAlive for Python 3.9 compatibility.

• Correctly truncate values of the string primitive when max_len or size is set.

• The string primitive will no longer generate duplicates when max_len or size is set.

• Greatly improved string to bytes conversion speed.

4.9.5 v0.2.1

Features

• Added simple TFTP fuzzer example.

82 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Fixes

• Fixed UDPSocketConnection data truncation when sending more data than the socket supports.

• Fixed execution of procmon stop_commands.

• Fixed TCP and SSL server connections.

4.9.6 v0.2.0

Features

• Rewrote and split the SocketConnection class into individual classes per socket type.

• SocketConnection is now deprecated. Use the classes derived from BaseSocketConnection instead.

• Added support for receiving on raw Layer 2 and Layer 3 connections.

• Layer 2 and Layer 3 connections may now use arbitrary payload / MTU sizes.

• Moved connection related modules into new connections submodule.

• Added the ability to repeat sending of packages within a given time or count.

• Added optional timeout and threshold to quit infinite connection retries.

• Reworked Monitors, consolidated interface. Breaking change: session no longer has netmon_options and proc-
mon_options.

• SessionInfo has had attributes renamed; procmon_results and netmon_results are deprecated and now aliases for
monitor_results and monitor_data respectively.

• New BoofuzzFailure exception type allows callback methods to signal a failure that should halt the current test
case.

• Added capture_output option to process monitor to capture target process stderr/stdout .

• Added post-start-target callbacks (called every time a target is started or restarted).

• Added method to gracefully stop PED-RPC Server.

• Added new boofuzz logo and favicon to docs and webinterface.

• Added FileConnection to dump messages to files.

• Removed deprecated session arguments fuzz_data_logger, log_level, logfile, logfile_level and log().

• Removed deprecated logger FuzzLoggerFile.

• crc32c is no longer a required package. Install manually if needed.

Fixes

• Fixed size of s_size block when output is ascii.

• Fixed issue with tornado on Python 3.8 and Windows.

• Fixed various potential type errors.

• Renamed requests folder to request_definitions because it shadowed the name of the requests python module.

• Examples are up to date with current Boofuzz version.

• Modified timings on serial_connection unit tests to improve test reliability.

4.9. Changelog 83

boofuzz Documentation, Release 0.4.2

• Refactored old unit-tests.

• Fixed network monitor compatibility with Python 3.

• Minor console GUI optimizations.

• Fixed crash_threshold_element handling if blocks are used.

• Fixed many bugs in which a failure would not stop the test case evaluation.

4.9.7 v0.1.6

Features

• New primitive s_bytes which fuzzes an arbitrary length binary value (similiar to s_string).

• We are now using Black for code style standardization.

• Compatibility for Python 3.8

• Added crc32c as checksum algorithm (Castagnoli).

• Added favicon for web interface.

• Pushed Tornado to 5.x and unpinned Flask.

Fixes

• Test cases were not being properly closed when using the check_message() functionality.

• Some code style changes to meet PEP8.

• s_group primitive was not accepting empty default value.

• Timeout during opening TCP connection now raises BoofuzzTargetConnectionFailedError exception.

• SSL/TLS works again. See examples/fuzz-ssl-server.py and examples/fuzz-ssl-client.py.

• Dropped six.binary_type in favor of b”” format.

• Fixed process monitor handling of backslashes in Windows start commands.

• Fixed and documented boo open.

• Fixed receive function in fuzz_logger_curses.

• Installing boofuzz with sudo is no longer recommended, use the –user option of pip instead.

• Fixed setting socket timeout options on Windows.

• If all sockets are exhausted, repeatedly try fuzzing for 4 minutes before failing.

• Fixed CSV logger send and receive data decoding.

• Handle SSL-related exception. Added ignore_connection_ssl_errors session attribute that can be set to True to
ignore SSL-related error on a test case.

• Fixed s_from_file decoding in Python 2 (the encoding parameter is now depreciated).

• Updated documentation of s_checksum. It is possible to use a custom algorithm with this block.

84 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

4.9.8 v0.1.5

Features

• New curses logger class to provide a console gui similar to the webinterface. Use the session option console_gui
to enable it. This has not been tested under Windows!

• Compatibility for Python 3

• Large test cases are now truncated, unless a failure is detected.

• When a target fails to respond after restart, boofuzz will now continue to restart instead of crashing.

• New Session option keep_web_open to allow analyzing the test results after test completion.

• Process monitor creates new crash file for each run by default.

• Long lines now wrap in web view; longer lines no longer need to be truncated.

• Process monitor now stores crash bins in JSON format instead of pickled format.

• Process monitor in Windows will use taskkill -F if taskkill fails.

Fixes

• Web server no longer crashes when asked for a non-existing test case.

• EINPROGRESS socket error is now handled while opening a socket (note: this sometimes-transient error moti-
vated the move to retry upon connection failure)

4.9.9 v0.1.4

Features

• New Session options restart_callbacks, pre_send_callbacks, and post_test_case_callbacks to hand over custom
callback functions.

• New Session option fuzz_db_keep_only_n_pass_cases. This allowes saving only n test cases preceding a failure
or error to the database.

• Added logic to find next available port for web interface or disable the web interface.

• Removed sleep logs when sleep time is zero.

• Added option to reuse the connection to the target.

Fixes

• Windows process monitor now handles combination of proc_name and/or start_commands more reasonably

• Windows process monitor handles certain errors more gracefully

• Fixed target close behavior so post send callbacks can use the target.

• Fixed a dependency issue in installation.

4.9. Changelog 85

boofuzz Documentation, Release 0.4.2

4.9.10 v0.1.3

Features

• Socket Connections now allow client fuzzing.

• Log only the data actually sent, when sending is truncated. Helps reduce database size, especially when fuzzing
layer 2 or 3.

• Target recv function now accepts a max_recv_bytes argument.

Fixes

• Fixed install package – now includes JavaScript files.

4.9.11 v0.1.2

Features

• Clearer error message when procmon is unavailable at fuzz start.

• Web UI now refreshes current case even when snap-to-current-test-case is disabled.

Fixes

• Web UI no longer permits negative test cases.

• Fix Windows procmon regression.

• Minor fixes and UI tweaks.

4.9.12 v0.1.1

Features

• New boo open command can open and inspect saved database log files.

• Unix procmon now saves coredumps by default.

• Improved “Cannot connect to target” error message.

• Improved API for registering callbacks.

• Made the global REQUESTS map available in top level boofuzz package.

86 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Fixes

• Handle exceptions when opening crash bin files in process monitor.

• Fix Block.__len__ to account for custom encoder.

4.9.13 v0.1.0

Features

• Web UI

– Statistics now auto-update.

– Test case logs now stream on the main page.

– Cool left & right arrow buttons to move through test case

• New Session parameter receive_data_after_fuzz. Controls whether to execute a receive step after sending
fuzz messages. Defaults to False. This significantly speeds up tests in which the target tends not to respond to
invalid messages.

Fixes

• Text log output would include double titles, e.g. “Test Step: Test Step: . . . ”

4.9.14 v0.0.13

Features

• Web UI

– Test case numbers are now clickable and link to test case detail view.

– Test case details now in color!

• FuzzLoggerDB

– Added FuzzLoggerDB to allow querying of test results during and after test run. Saves results in a
SQLite file.

– Added Session.open_test_run() to read test results database from previous test run.

• New Session.feature_check() method to verify protocol functionality before fuzzing.

• Process Monitor

– Unify process monitor command line interface between Unix and Windows.

– Added procmon option proc_name to support asynchronously started target processes.

– procmon is now checked for errors before user post_send() is called, reducing redundant error mes-
sages.

– Improved procmon logging.

– Process monitor gives more helpful error messages when running 64-bit application (unsupported) or
when a process is killed before being attached

• Logging Improvements

4.9. Changelog 87

boofuzz Documentation, Release 0.4.2

– Target open() and close() operations are now logged.

– Added some optional debug output from boofuzz runtime.

– Improve capability and logging of messages’ callback methods.

• New Session & Connection Options

– Add Session receive_data_after_each_request option to enable disabling of data receipt after
messages are sent.

– Session skip argument replaced with index_start and index_end.

– Session now has separate crash thresholds for elements/blocks and nodes/messages.

– Give SocketConnection separate timeouts for send()/recv().

• Ease of Use

– Target.recv() now has a default max_bytes value.

– Added DEFAULT_PROCMON_PORT constant.

– Session.post_send()’s sock parameter now deprecated (use target instead).

Fixes

• Fixed bug in which failures were not recognized.

• BitField blocks with ASCII format reported incorrect sizes.

• Fixed bug in s_update.

• Handle socket errors that were getting missed.

• Fixed process monitor logging when providing more or less than 1 stop/start commands.

• Show graceful error on web requests for non-existent test cases.

• get_max_udp_size() was crashing in Windows.

• String padding was not always being applied.

• String was not accepting unicode strings in value parameter.

• String was skipping valid mutations and reporting wrong num_mutations() when size parameter was used.

• Unix and Windows process monitors now share much more code.

Development

• Added unit tests for BitField.

• Cleaned up CSS on web pages.

• Added a unit test to verify restart on failure behavior

88 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

4.9.15 0.0.12

Features

• Test cases now have descriptive names

• Added Session methods to fuzz a test cae by name: fuzz_by_name and fuzz_single_node_by_path

Fixes

• Fixed test case numbers when using fuzz_single_case

4.9.16 0.0.11

Features

• Set Session check_data_received_each_request to False to disable receive after send.

Fixes

• Dosctring format fixes.

4.9.17 0.0.10

Features

• Add Session ignore_connection_reset parameter to suppress ECONNRESET errors.

• Add Session ignore_connection_aborted parameter to suppress ECONNABORTED errors.

Fixes

• Fix Session class docstring formats.

4.9.18 0.0.9

Features

• s_size is now fuzzable by default.

• Add new s_fuzz_list primitive to read fuzz value from files.

• Add new FuzzLoggerCsv to write log in CSV format

4.9. Changelog 89

boofuzz Documentation, Release 0.4.2

Fixes

• Fixed: Add missing dummy value for custom checksum, allowing recursive uses of length/checksum (issue #107)

4.9.19 0.0.8

Features

• Console output - now with colors!

• process_monitor_unix.py: added option to move coredumps for later analysis.

• The process monitor (procmon) now tracks processes by PID by default rather than searching by name. Therefore,
stop_commands and proc_name are no longer required.

• SIGINT (AKA Ctrl+C) now works to close both boofuzz and process_monitor.py (usually).

• Made Unix procmon more compatible with Windows.

• Improved procmon debugger error handling, e.g., when running 64-bit apps.

• Windows procmon now runs even if pydbg fails.

• Added --help parameter to process monitor.

• Target class now takes procmon and procmon_options in constructor.

• Added example fuzz scripts.

Fixes

• SIGINT (AKA Ctrl+C) now works to close both boofuzz and process_monitor.py (usually).

• Fixed: The pedrpc module was not being properly included in imports.

• Made process_monitor.py --crash_bin optional (as documented).

• Improved procmon behavior when certain parameters aren’t given.

• Improved procmon error handling.

• Fixed a bug in which the procmon would not properly restart a target that had failed without crashing.

4.9.20 0.0.7

Features

• Added several command injection strings from fuzzdb.

• Blocks can now be created and nested using with s_block("my-block"):

90 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

Fixes

• Fixed pydot import error message

4.9.21 0.0.6

Features

• Added Request.original_value() function to render the request as if it were not fuzzed. This will help
enable reuse of a fuzz definition to generate valid requests.

• SocketConnection can now send and receive UDP broadcast packets using the udp_broadcast constructor
parameter.

• Target.recv() now logs an entry before receiving data, in order to help debug receiving issues.

Fixes

• Maximum UDP payload value was incorrect, causing crashes for tests running over UDP. It now works on some
systems, but the maximum value may be too high for systems that set it lower than the maximum possible value,
65507.

• SocketConnection class now handles more send and receive errors: ECONNABORTED, ECONNRESET,
ENETRESET, and ETIMEDOUT.

• Fixed setup.py to not include superfluous packages.

Development

• Added two exceptions: BoofuzzTargetConnectionReset and BoofuzzTargetConnectionAborted.

• These two exceptions are handled in sessions.py and may be thrown by any ITargetConnection implemen-
tation.

4.9.22 0.0.5

Fixes

• Boofuzz now properly reports crashes detected by the process monitor. It was calling log_info instead of log_fail.

• Boofuzz will no longer crash, but will rather give a helpful error message, if the target refuses socket connections.

• Add utils/crash_binning.py to boofuzz/utils, avoiding import errors.

• Fix procmon argument processing bug.

• Fix typos in INSTALL.rst.

4.9. Changelog 91

boofuzz Documentation, Release 0.4.2

4.9.23 0.0.4

• Add Gitter badge to README.

• Add default sleep_time and fuzz_data_logger for Session to simplify boilerplate.

4.9.24 0.0.3

• Fixed deployment from 0.0.2.

• Simplify CONTRIBUTING.rst for automated deployment.

• tox no longer runs entirely as sudo. The sudo has been moved into tox.ini and is more fine-grained.

• Reduced default Session.__init__ restart_sleep_time from 5 minutes to 5 seconds.

4.9.25 0.0.2

Continuous deployment with Travis.

Development

• Added build and PyPI badges.

• Added CONTRIBUTING.rst.

• check-manifest now runs in automated build.

• Travis now deploys to PyPI!

4.9.26 0.0.1-dev5

Development

• Tests now run on tox.

• Added Google Groups and Twitter link.

4.9.27 0.0.1-dev4

Fixes

• Missing property setters in boofuzz.request.Request now implemented.

• Unit tests now pass on Windows.

• Fixed wheel build issue; boofuzz subpackages were missing.

92 Chapter 4. Public Protocol Libraries

boofuzz Documentation, Release 0.4.2

4.9.28 0.0.1-dev3

Fixes

• Session constructor param session_filename is now optional.

4.9.29 0.0.1-dev2

New features

• Now on PyPI! pip install boofuzz

• API is now centralized so all classes are available at top level boofuzz.*

– This makes it way easier to use. Everything can be used like boofuzz.MyClass instead of boofuzz.
my_file.MyClass.

• Added EzOutletReset class to support restarting devices using an ezOutlet EZ-11b.

Backwards-incompatible

• Target now only takes an ITargetConnection. This separates responsibilities and makes our code more flexible
with different kinds of connections.

Fixes

• Bugs fixed:

– helpers.udp_checksum was failing with oversized messages.

– Missing install requirements.

– Grammar and spelling.

– setup.py was previously installing around five mostly unwanted packages. Fixed.

– Removed deprecated unit tests.

– Removed overly broad exception handling in Session.

– Checksum.render() for UDP was not handling dependencies properly.

Back-end Improvements

This section took the most work. It has the least visible impact, but all of the refactors enable new features, fixes, and
unit tests.

• Primitives and Blocks:

– Created IFuzzablewhich properly defines interface for Block, Request, and all BasePrimitive classes.

– Made effectively private members actually private.

– Eliminated exhaust() function. It was used only once and was primarily a convoluted break statement.
Now it’s gone. :)

– Split all block and primitive classes into separate files.

• Many Unit tests added.

4.9. Changelog 93

boofuzz Documentation, Release 0.4.2

Other

• Continuous integration with Travis is running!

• Doc organization improvements.

• Can now install with extras [dev]

4.9.30 Initial Development Release - 0.0.1-dev1

• Much easier install experience!

• Support for arbitrary communications mediums.

– Added serial communications support.

– Improved sockets to fuzz at Ethernet and IP layers.

• Extensible instrumentation/failure detection.

• Better recording of test data.

– Records all sent and received data

– Records errors in human-readable format, in same place as sent/received data.

• Improved functionality in checksum blocks.

• Self-referential size and checksum blocks now work.

• post_send callbacks can now check replies and log failures.

• Far fewer bugs.

• Numerous refactors within framework code.

94 Chapter 4. Public Protocol Libraries

CHAPTER

FIVE

CONTRIBUTIONS

Pull requests are welcome, as boofuzz is actively maintained (at the time of this writing ;)). See Contributing.

95

boofuzz Documentation, Release 0.4.2

96 Chapter 5. Contributions

CHAPTER

SIX

COMMUNITY

For questions that take the form of “How do I. . . with boofuzz?” or “I got this error with boofuzz, why?”, consider
posting your question on Stack Overflow. Make sure to use the fuzzing tag.

If you’ve found a bug, or have an idea/suggestion/request, file an issue here on GitHub.

For other questions, check out boofuzz on gitter or Google Groups.

For updates, follow @b00fuzz on Twitter.

97

https://gitter.im/jtpereyda/boofuzz
https://groups.google.com/d/forum/boofuzz
https://twitter.com/b00fuzz

boofuzz Documentation, Release 0.4.2

98 Chapter 6. Community

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

99

boofuzz Documentation, Release 0.4.2

100 Chapter 7. Indices and tables

PYTHON MODULE INDEX

b
boofuzz.connections.ip_constants, 77
boofuzz.event_hook, 79
boofuzz.helpers, 75
boofuzz.monitors.pedrpc, 78
boofuzz.utils.crash_binning, 78
boofuzz.utils.dcerpc, 78

101

boofuzz Documentation, Release 0.4.2

102 Python Module Index

INDEX

A
add_node() (boofuzz.Session method), 17
add_target() (boofuzz.Session method), 17
Aligned() (in module boofuzz), 56
alive() (boofuzz.monitors.BaseMonitor method), 35
alive() (boofuzz.monitors.NetworkMonitor method), 38
alive() (boofuzz.monitors.ProcessMonitor method), 36

B
BaseMonitor (class in boofuzz.monitors), 35
BaseSocketConnection (class in boofuzz.connections),

26
bind() (in module boofuzz.utils.dcerpc), 78
bind_ack() (in module boofuzz.utils.dcerpc), 78
bins (boofuzz.utils.crash_binning.CrashBinning at-

tribute), 78
BitField() (in module boofuzz), 59
Block() (in module boofuzz), 53
boofuzz.connections.ip_constants

module, 77
boofuzz.event_hook

module, 79
boofuzz.helpers

module, 75
boofuzz.monitors.pedrpc

module, 78
boofuzz.utils.crash_binning

module, 78
boofuzz.utils.dcerpc

module, 78
build_webapp_thread() (boofuzz.Session method), 17
Byte() (in module boofuzz), 59
Bytes() (in module boofuzz), 60

C
calculate_four_byte_padding() (in module boo-

fuzz.helpers), 75
CallbackMonitor (class in boofuzz.monitors), 38
Checksum() (in module boofuzz), 54
Client (class in boofuzz.monitors.pedrpc), 78
close() (boofuzz.connections.BaseSocketConnection

method), 26

close() (boofuzz.connections.ITargetConnection
method), 25

close() (boofuzz.connections.SerialConnection
method), 33

close() (boofuzz.connections.TCPSocketConnection
method), 26

close() (boofuzz.Target method), 21
close_test() (boofuzz.FuzzLogger method), 50
close_test() (boofuzz.FuzzLoggerCsv method), 45
close_test() (boofuzz.FuzzLoggerCurses method), 47
close_test() (boofuzz.FuzzLoggerText method), 43
close_test() (boofuzz.IFuzzLogger method), 40
close_test_case() (boofuzz.FuzzLogger method), 50
close_test_case() (boofuzz.FuzzLoggerCsv method),

45
close_test_case() (boofuzz.FuzzLoggerCurses

method), 48
close_test_case() (boofuzz.FuzzLoggerText method),

43
close_test_case() (boofuzz.IFuzzLogger method), 40
connect() (boofuzz.Session method), 17
context_path (boofuzz.Fuzzable property), 62
CountRepeater (class in boofuzz.repeater), 24
crash_synopsis() (boo-

fuzz.utils.crash_binning.CrashBinning
method), 78

CrashBinning (class in boofuzz.utils.crash_binning), 78
CrashBinStruct (class in boofuzz.utils.crash_binning),

78
crc16() (in module boofuzz.helpers), 75
crc32() (in module boofuzz.helpers), 75

D
Delim() (in module boofuzz), 57
DWord() (in module boofuzz), 61

E
encode() (boofuzz.Fuzzable method), 62
encode() (boofuzz.FuzzableBlock method), 65
EventHook (class in boofuzz.event_hook), 79
example_test_case_callback() (boofuzz.Session

method), 17

103

boofuzz Documentation, Release 0.4.2

exec_speed (boofuzz.Session property), 18
export_file() (boofuzz.Session method), 18
export_file() (boofuzz.utils.crash_binning.CrashBinning

method), 79

F
failure_summary() (boofuzz.FuzzLogger method), 50
feature_check() (boofuzz.Session method), 18
fire() (boofuzz.event_hook.EventHook method), 79
format_log_msg() (in module boofuzz.helpers), 75
format_msg() (in module boofuzz.helpers), 75
FromFile() (in module boofuzz), 58
fuzz() (boofuzz.Session method), 18
fuzz_by_name() (boofuzz.Session method), 18
fuzz_single_case() (boofuzz.Session method), 18
fuzzable (boofuzz.Fuzzable property), 63
Fuzzable (class in boofuzz), 62
FuzzableBlock (class in boofuzz), 64
FuzzLogger (class in boofuzz), 50
FuzzLoggerCsv (class in boofuzz), 45
FuzzLoggerCurses (class in boofuzz), 47
FuzzLoggerText (class in boofuzz), 43

G
get_boofuzz_version() (in module boofuzz.helpers),

75
get_child_data() (boofuzz.FuzzableBlock method), 65
get_crash_synopsis() (boo-

fuzz.monitors.BaseMonitor method), 35
get_crash_synopsis() (boo-

fuzz.monitors.ProcessMonitor method), 36
get_max_udp_size() (in module boofuzz.helpers), 75
get_mutations() (boofuzz.Fuzzable method), 63
get_num_mutations() (boofuzz.Fuzzable method), 63
get_time_stamp() (in module boofuzz.helpers), 75
get_value() (boofuzz.Fuzzable method), 63
Group() (in module boofuzz), 57

H
hex_str() (in module boofuzz.helpers), 75
hex_to_hexstr() (in module boofuzz.helpers), 75

I
IFuzzLogger (class in boofuzz), 39
IFuzzLoggerBackend (in module boofuzz), 42
import_file() (boofuzz.Session method), 19
import_file() (boofuzz.utils.crash_binning.CrashBinning

method), 79
INDENT_SIZE (boofuzz.FuzzLoggerCurses attribute), 47
INDENT_SIZE (boofuzz.FuzzLoggerText attribute), 43
info (boofuzz.connections.ITargetConnection property),

25
info (boofuzz.connections.RawL2SocketConnection

property), 30

info (boofuzz.connections.RawL3SocketConnection
property), 31

info (boofuzz.connections.SerialConnection property),
34

info (boofuzz.connections.TCPSocketConnection prop-
erty), 26

info (boofuzz.connections.UDPSocketConnection prop-
erty), 27

ip_str_to_bytes() (in module boofuzz.helpers), 75
ipv4_checksum() (in module boofuzz.helpers), 76
ITargetConnection (class in boofuzz.connections), 25

L
last_crash (boofuzz.utils.crash_binning.CrashBinning

attribute), 79
last_crash_synopsis() (boo-

fuzz.utils.crash_binning.CrashBinning
method), 79

log_check() (boofuzz.FuzzLogger method), 50
log_check() (boofuzz.FuzzLoggerCsv method), 46
log_check() (boofuzz.FuzzLoggerCurses method), 48
log_check() (boofuzz.FuzzLoggerText method), 43
log_check() (boofuzz.IFuzzLogger method), 41
log_error() (boofuzz.FuzzLogger method), 51
log_error() (boofuzz.FuzzLoggerCsv method), 46
log_error() (boofuzz.FuzzLoggerCurses method), 48
log_error() (boofuzz.FuzzLoggerText method), 43
log_error() (boofuzz.IFuzzLogger method), 41
log_fail() (boofuzz.FuzzLogger method), 51
log_fail() (boofuzz.FuzzLoggerCsv method), 46
log_fail() (boofuzz.FuzzLoggerCurses method), 48
log_fail() (boofuzz.FuzzLoggerText method), 44
log_fail() (boofuzz.IFuzzLogger method), 41
log_info() (boofuzz.FuzzLogger method), 51
log_info() (boofuzz.FuzzLoggerCsv method), 46
log_info() (boofuzz.FuzzLoggerCurses method), 49
log_info() (boofuzz.FuzzLoggerText method), 44
log_info() (boofuzz.IFuzzLogger method), 41
log_message() (boofuzz.repeater.CountRepeater

method), 24
log_message() (boofuzz.repeater.Repeater method), 23
log_message() (boofuzz.repeater.TimeRepeater

method), 23
log_pass() (boofuzz.FuzzLogger method), 51
log_pass() (boofuzz.FuzzLoggerCsv method), 46
log_pass() (boofuzz.FuzzLoggerCurses method), 49
log_pass() (boofuzz.FuzzLoggerText method), 44
log_pass() (boofuzz.IFuzzLogger method), 41
log_recv() (boofuzz.FuzzLogger method), 51
log_recv() (boofuzz.FuzzLoggerCsv method), 46
log_recv() (boofuzz.FuzzLoggerCurses method), 49
log_recv() (boofuzz.FuzzLoggerText method), 44
log_recv() (boofuzz.IFuzzLogger method), 42
log_send() (boofuzz.FuzzLogger method), 52

104 Index

boofuzz Documentation, Release 0.4.2

log_send() (boofuzz.FuzzLoggerCsv method), 47
log_send() (boofuzz.FuzzLoggerCurses method), 49
log_send() (boofuzz.FuzzLoggerText method), 44
log_send() (boofuzz.IFuzzLogger method), 42

M
max_payload() (boofuzz.connections.UDPSocketConnection

class method), 28
Mirror() (in module boofuzz), 59
mkdir_safe() (in module boofuzz.helpers), 76
module

boofuzz.connections.ip_constants, 77
boofuzz.event_hook, 79
boofuzz.helpers, 75
boofuzz.monitors.pedrpc, 78
boofuzz.utils.crash_binning, 78
boofuzz.utils.dcerpc, 78

monitors_alive() (boofuzz.Target method), 22
most_recent_test_id (boofuzz.FuzzLogger property),

52
mutations() (boofuzz.Fuzzable method), 63
mutations() (boofuzz.FuzzableBlock method), 65

N
name (boofuzz.Fuzzable property), 63
name_counter (boofuzz.Fuzzable attribute), 63
netmon_options (boofuzz.Target property), 22
netmon_results (boofuzz.Session property), 19
NetworkMonitor (class in boofuzz.monitors), 37
num_mutations() (boofuzz.Fuzzable method), 63
num_mutations() (boofuzz.FuzzableBlock method), 65
num_mutations() (boofuzz.Session method), 19

O
on_new_server() (boofuzz.monitors.NetworkMonitor

method), 38
on_new_server() (boofuzz.monitors.pedrpc.Client

method), 78
on_new_server() (boofuzz.monitors.ProcessMonitor

method), 36
open() (boofuzz.connections.BaseSocketConnection

method), 26
open() (boofuzz.connections.ITargetConnection

method), 25
open() (boofuzz.connections.RawL2SocketConnection

method), 30
open() (boofuzz.connections.RawL3SocketConnection

method), 31
open() (boofuzz.connections.SerialConnection method),

34
open() (boofuzz.connections.SSLSocketConnection

method), 29
open() (boofuzz.connections.TCPSocketConnection

method), 27

open() (boofuzz.connections.UDPSocketConnection
method), 28

open() (boofuzz.Target method), 22
open_test_case() (boofuzz.FuzzLogger method), 52
open_test_case() (boofuzz.FuzzLoggerCsv method),

47
open_test_case() (boofuzz.FuzzLoggerCurses

method), 49
open_test_case() (boofuzz.FuzzLoggerText method),

45
open_test_case() (boofuzz.IFuzzLogger method), 42
open_test_step() (boofuzz.FuzzLogger method), 52
open_test_step() (boofuzz.FuzzLoggerCsv method),

47
open_test_step() (boofuzz.FuzzLoggerCurses

method), 49
open_test_step() (boofuzz.FuzzLoggerText method),

45
open_test_step() (boofuzz.IFuzzLogger method), 42
original_value() (boofuzz.Fuzzable method), 64

P
parse_target() (in module boofuzz.helpers), 76
parse_test_case_name() (in module boofuzz.helpers),

76
path_exists() (in module boofuzz.helpers), 76
pause_for_signal() (in module boofuzz.helpers), 76
pedrpc_connect() (boofuzz.Target method), 22
post_send() (boofuzz.monitors.BaseMonitor method),

35
post_send() (boofuzz.monitors.CallbackMonitor

method), 39
post_send() (boofuzz.monitors.NetworkMonitor

method), 38
post_send() (boofuzz.monitors.ProcessMonitor

method), 37
post_start_target() (boofuzz.monitors.BaseMonitor

method), 35
post_start_target() (boo-

fuzz.monitors.CallbackMonitor method),
39

pre_send() (boofuzz.monitors.BaseMonitor method), 35
pre_send() (boofuzz.monitors.CallbackMonitor

method), 39
pre_send() (boofuzz.monitors.NetworkMonitor

method), 38
pre_send() (boofuzz.monitors.ProcessMonitor method),

37
ProcessMonitor (class in boofuzz.monitors), 36
procmon_options (boofuzz.Target property), 22
ProtocolSession (class in boofuzz), 74
ProtocolSessionReference (class in boofuzz), 74
push() (boofuzz.FuzzableBlock method), 66

Index 105

boofuzz Documentation, Release 0.4.2

pydbg (boofuzz.utils.crash_binning.CrashBinning at-
tribute), 79

Q
qualified_name (boofuzz.Fuzzable property), 64
QWord() (in module boofuzz), 61

R
RandomData() (in module boofuzz), 57
RawL2SocketConnection (class in boo-

fuzz.connections), 29
RawL3SocketConnection (class in boo-

fuzz.connections), 30
record_crash() (boo-

fuzz.utils.crash_binning.CrashBinning
method), 79

recv() (boofuzz.connections.ITargetConnection
method), 25

recv() (boofuzz.connections.RawL2SocketConnection
method), 30

recv() (boofuzz.connections.RawL3SocketConnection
method), 31

recv() (boofuzz.connections.SerialConnection method),
34

recv() (boofuzz.connections.SSLSocketConnection
method), 29

recv() (boofuzz.connections.TCPSocketConnection
method), 27

recv() (boofuzz.connections.UDPSocketConnection
method), 28

recv() (boofuzz.Target method), 22
register_post_test_case_callback() (boo-

fuzz.Session method), 19
render() (boofuzz.Fuzzable method), 64
render_graph_gml() (boofuzz.Session method), 20
render_graph_graphviz() (boofuzz.Session method),

20
render_graph_udraw() (boofuzz.Session method), 21
render_graph_udraw_update() (boofuzz.Session

method), 21
repeat() (boofuzz.repeater.CountRepeater method), 24
repeat() (boofuzz.repeater.Repeater method), 23
repeat() (boofuzz.repeater.TimeRepeater method), 23
Repeat() (in module boofuzz), 55
Repeater (class in boofuzz.repeater), 23
request (boofuzz.Fuzzable property), 64
Request() (in module boofuzz), 53
request() (in module boofuzz.utils.dcerpc), 78
reset() (boofuzz.repeater.CountRepeater method), 24
reset() (boofuzz.repeater.Repeater method), 23
reset() (boofuzz.repeater.TimeRepeater method), 23
restart_target() (boofuzz.monitors.BaseMonitor

method), 35

restart_target() (boofuzz.monitors.CallbackMonitor
method), 39

restart_target() (boofuzz.monitors.NetworkMonitor
method), 38

restart_target() (boofuzz.monitors.ProcessMonitor
method), 37

retrieve_data() (boofuzz.monitors.BaseMonitor
method), 36

retrieve_data() (boofuzz.monitors.NetworkMonitor
method), 38

runtime (boofuzz.Session property), 19

S
s_binary() (in module boofuzz), 70
s_bit_field() (in module boofuzz), 71
s_block() (in module boofuzz), 67
s_block_end() (in module boofuzz), 68
s_block_start() (in module boofuzz), 67
s_byte() (in module boofuzz), 72
s_bytes() (in module boofuzz), 72
s_checksum() (in module boofuzz), 68
s_delim() (in module boofuzz), 70
s_dword() (in module boofuzz), 73
s_from_file() (in module boofuzz), 71
s_get() (in module boofuzz), 66
s_group() (in module boofuzz), 70
s_initialize() (in module boofuzz), 66
s_lego() (in module boofuzz), 70
s_num_mutations() (in module boofuzz), 67
s_qword() (in module boofuzz), 73
s_random() (in module boofuzz), 70
s_repeat() (in module boofuzz), 68
s_size() (in module boofuzz), 69
s_static() (in module boofuzz), 71
s_string() (in module boofuzz), 71
s_switch() (in module boofuzz), 67
s_update() (in module boofuzz), 69
s_word() (in module boofuzz), 72
send() (boofuzz.connections.ITargetConnection

method), 25
send() (boofuzz.connections.RawL2SocketConnection

method), 30
send() (boofuzz.connections.RawL3SocketConnection

method), 31
send() (boofuzz.connections.SerialConnection method),

34
send() (boofuzz.connections.SSLSocketConnection

method), 29
send() (boofuzz.connections.TCPSocketConnection

method), 27
send() (boofuzz.connections.UDPSocketConnection

method), 28
send() (boofuzz.Target method), 22
SerialConnection (class in boofuzz.connections), 33

106 Index

boofuzz Documentation, Release 0.4.2

serve_forever() (boofuzz.monitors.pedrpc.Server
method), 78

Server (class in boofuzz.monitors.pedrpc), 78
server_init() (boofuzz.Session method), 19
Session (class in boofuzz), 15
set_crash_filename() (boo-

fuzz.monitors.ProcessMonitor method), 37
set_filter() (boofuzz.monitors.NetworkMonitor

method), 38
set_fuzz_data_logger() (boofuzz.Target method), 22
set_log_path() (boofuzz.monitors.NetworkMonitor

method), 38
set_options() (boofuzz.monitors.BaseMonitor

method), 36
set_options() (boofuzz.monitors.NetworkMonitor

method), 38
set_options() (boofuzz.monitors.ProcessMonitor

method), 37
set_proc_name() (boofuzz.monitors.ProcessMonitor

method), 37
set_start_commands() (boo-

fuzz.monitors.ProcessMonitor method), 37
set_stop_commands() (boo-

fuzz.monitors.ProcessMonitor method), 37
Simple() (in module boofuzz), 56
Size() (in module boofuzz), 55
SocketConnection() (in module boofuzz.connections),

32
SSLSocketConnection (class in boofuzz.connections),

28
start() (boofuzz.repeater.CountRepeater method), 24
start() (boofuzz.repeater.Repeater method), 23
start() (boofuzz.repeater.TimeRepeater method), 23
start_target() (boofuzz.monitors.BaseMonitor

method), 36
start_target() (boofuzz.monitors.ProcessMonitor

method), 37
Static() (in module boofuzz), 56
stop() (boofuzz.monitors.pedrpc.Server method), 78
stop_mutations() (boofuzz.Fuzzable method), 64
stop_target() (boofuzz.monitors.BaseMonitor

method), 36
stop_target() (boofuzz.monitors.ProcessMonitor

method), 37
str_to_bytes() (in module boofuzz.helpers), 76
String() (in module boofuzz), 58

T
Target (class in boofuzz), 21
TCPSocketConnection (class in boofuzz.connections),

26
test_case_data() (boofuzz.Session method), 19
TimeRepeater (class in boofuzz.repeater), 23
transmit_fuzz() (boofuzz.Session method), 20

transmit_normal() (boofuzz.Session method), 20

U
udp_checksum() (in module boofuzz.helpers), 76
UDP_MAX_LENGTH_THEORETICAL (in module boo-

fuzz.connections.ip_constants), 77
UDP_MAX_PAYLOAD_IPV4_THEORETICAL (in module

boofuzz.connections.ip_constants), 77
UDPSocketConnection (class in boofuzz.connections),

27
uuid_bin_to_str() (in module boofuzz.helpers), 77
uuid_str_to_bin() (in module boofuzz.helpers), 77

W
Word() (in module boofuzz), 60

Index 107

	Why?
	Features
	Installation
	Installing boofuzz
	Prerequisites
	Install
	From Source
	Install with Poetry
	Install with Pip

	Extras
	process_monitor.py
	network_monitor.py

	Quickstart
	More examples
	Simple FTP
	Simple HTTP and HTTP with body

	Contributing
	Issues and Bugs
	Code Reviews
	Contributors
	Pull Request Checklist

	Maintainers
	Review Checklist
	Release Checklist
	Prep
	Release

	Public Protocol Libraries
	Session
	Request-Graph visualisation options

	Target
	Repeater
	TimeRepeater
	CountRepeater

	Connections
	ITargetConnection
	BaseSocketConnection
	TCPSocketConnection
	UDPSocketConnection
	SSLSocketConnection
	RawL2SocketConnection
	RawL3SocketConnection
	SocketConnection
	SerialConnection

	Monitors
	Monitor Interface (BaseMonitor)
	ProcessMonitor
	NetworkMonitor
	CallbackMonitor

	Logging
	Logging Interface (IFuzzLogger)
	Text Logging
	CSV Logging
	Console-GUI Logging
	FuzzLogger Object

	Protocol Definition
	Overview
	Example
	Request
	Blocks
	Block
	Checksum
	Repeat
	Size
	Aligned

	Primitives
	Static
	Simple
	Delim
	Group
	RandomData
	String
	FromFile
	Mirror
	BitField
	Byte
	Bytes
	Word
	DWord
	QWord

	Making Your Own Block/Primitive

	Static Protocol Definition
	Request Manipulation
	Block Manipulation
	Primitive Definition

	Other Modules
	Test Case Session Reference
	Test Case Context
	Helpers
	IP Constants
	PED-RPC
	DCE-RPC
	Crash binning
	EventHook

	Changelog
	v0.4.2
	Features
	Fixes

	v0.4.1
	Features
	Fixes

	v0.4.0
	Features
	Fixes

	v0.3.0
	Features
	Fixes

	v0.2.1
	Features
	Fixes

	v0.2.0
	Features
	Fixes

	v0.1.6
	Features
	Fixes

	v0.1.5
	Features
	Fixes

	v0.1.4
	Features
	Fixes

	v0.1.3
	Features
	Fixes

	v0.1.2
	Features
	Fixes

	v0.1.1
	Features
	Fixes

	v0.1.0
	Features
	Fixes

	v0.0.13
	Features
	Fixes
	Development

	0.0.12
	Features
	Fixes

	0.0.11
	Features
	Fixes

	0.0.10
	Features
	Fixes

	0.0.9
	Features
	Fixes

	0.0.8
	Features
	Fixes

	0.0.7
	Features
	Fixes

	0.0.6
	Features
	Fixes
	Development

	0.0.5
	Fixes

	0.0.4
	0.0.3
	0.0.2
	Development

	0.0.1-dev5
	Development

	0.0.1-dev4
	Fixes

	0.0.1-dev3
	Fixes

	0.0.1-dev2
	New features
	Backwards-incompatible
	Fixes
	Back-end Improvements
	Other

	Initial Development Release - 0.0.1-dev1

	Contributions
	Community
	Indices and tables
	Python Module Index
	Index

